Testimony of Dr. Leah Ellis, Chief Executive Officer and Co-founder
Sublime Systems

Before the
Committee on Environment and Public Works
United States Senate

Regarding
“Opportunities in Industrial Decarbonization: Delivering Benefits for the Economy and the Climate”

November 15, 2023 at 10:00 a.m.
Chairman Carper, Ranking Member Capito, and Members of the Committee, thank you for hosting me today and offering me the opportunity to share industry perspectives on the critical role the federal government plays in accelerating demand and adoption of cleaner building materials such as ours. As the Chief Executive Officer of Sublime Systems — a company beginning to commercialize a breakthrough low-carbon cement manufacturing process to replace a process that today results in 8% of global CO₂ emissions — I can attest to the positive impact that legislation and executive action is making on the marketplace.

While I am best positioned to share perspectives on cement and concrete, I think I can appropriately represent my colleagues in other industries in saying that industrial decarbonization provides extraordinary opportunities. These include fostering innovation and enhancing competitiveness, drawing talent, creating new job opportunities for Americans who have been marginalized by transitions in other industries, boosting domestic manufacturing while reducing dependence on foreign imports, and producing goods that significantly lower emissions that contribute to climate change and threaten national security.

Decarbonizing industries such as cement is a critical lever in fighting climate change, as they are large contributors to CO₂ emissions and have been widely regarded as tough to abate — until now.

This is truly a win-win-win opportunity that energizes myself and my colleagues in our work, and I am so grateful to have the opportunity to speak about it with you all today.

The Next American Frontier

In looking at the technologies that have helped reduce emissions and fight climate change, we all must acknowledge the incredible momentum in transitioning our fossil-fueled grid to a cleaner, greener one, with the increased adoption of wind, solar and hydro. The benefits of investments in electric vehicle technology and adoption are increasingly coming to fruition. Together, both industries provide an important stream of new job opportunities that boost the American economy, and they do it while working to protect our planet from the devastating effects of climate change.

The next frontier in the fight to mitigate climate change is industrial decarbonization — particularly carbon avoidance technologies.
I started Sublime Systems with the mission of having a swift, massive, and enduring impact on global CO₂ emissions by decarbonizing cement, the key ingredient in concrete. I am a dual citizen educated in a top Canadian institution, but I returned to the U.S. to work on this problem because I care. I am not alone in this trajectory, as many of America's brightest young minds want to work on fighting climate change, too. Investors are noticing this trend in talent. They tell me they are putting their money where America’s talent is flowing: into cleantech.

I came to the problem of cement as a battery scientist who recognized that new advances in that field and their role in fighting climate change were now incremental, relative to industries like cement that were high-emitting and had primarily remained untouched for 150+ years. My co-founder and I imagined that we could instead harness the progress in renewable energy generation and storage to transform the processes that were born of the cheap fossil fuels of the Industrial Revolution, long before we understood the harm they cause to our planet.

The Scope of the Opportunity

Cement manufacturing has relied on these fossil fuels for 150+ years — and as an industry is now responsible for 8% of global CO₂ emissions. If cement were a country, it would be the third highest emitter, after the US and China. This is a function of how it is made and of its scale — cement is the most consumed material on Earth, after water. Today's cement, ordinary portland cement or OPC for short, is made in massive, industrial kilns that need to reach temperatures of 1400°C to produce the required chemical reactions. This of course can only be achieved by burning fossil fuels, usually bituminous coal. That contributes to about half of cement’s carbon footprint. The remaining emissions come from the use of the feedstock limestone, which is half CO₂ by weight. Limestone needs to thermally decompose to form reactive cement, so it releases all that CO₂ into the air when it is burned inside the kiln.

The result is roughly one ton of CO₂ is emitted for every ton of portland cement produced. And we currently produce 4 billion tons of cement per year across the globe. If we aim to achieve net-zero by 2050 and limit global warming to 1.5 °C, we must eliminate cement’s CO₂ emissions. However, at the same time, cement is the strongest and most durable building material, and we must keep building if we are to shelter the world’s growing and urbanizing human population. It is estimated that 70% of the infrastructure that will exist in 2050 is not yet built. We need cement now more than ever — therefore, we need a breakthrough approach to low-carbon cement production.

It is critical that we recognize the current incumbent cement industry for taking admirable, swift action in the last few years to decarbonize with the tools currently available. Our contacts in the industry have marveled at how quickly they have changed after decades of doing it the same
way. They have reduced emissions primarily through adopting Portland Limestone blended cements, which have about 10% lower CO₂ emissions, or displacement of the high-carbon cement binder with much lower-carbon supplementary cementitious materials. These achievements should be celebrated as impactful in an industry with such a large footprint. Still, there is much more work to be done. As such, a number of innovators have emerged in recent years to reimagine how we produce cement and cementitious products to further accelerate that decarbonization.

Sublime Systems’ Contribution to Industrial Decarbonization

At Sublime, we are avoiding both the heating and process emissions typical of cement manufacturing by electrifying the entire production process. We use a water-splitting electrolyzer to chemically break down the bonds in inert minerals and turn them into the reactive components of cement: calcium and silica. This process runs at ambient temperature entirely on electricity — a premise that is increasingly exciting as renewable electricity gets cheaper, more ubiquitous, and more reliable. And we can use a range of abundantly available minerals and raw materials as feedstocks, which do not release CO₂ when broken down. The result is a cement that can be mixed with water to gel, harden, set, and endure in concrete the same way that today's high-emitting OPC does. Our Sublime Cement™ is fully compliant with the performance-based specification for hydraulic cement, ASTM C1157, allowing it to be specified in building projects in the U.S. and abroad (Appendix 1, Sublime Systems Press Release). And we are now in the process of working hand in hand with the users of cement, ready mix concrete producers, to verify that it all works within their current infrastructure.

Public Sector Leadership Has Already Proven Potent

The public sector's investment in decarbonization is not only an investment in the economy and our future way of life on this planet, but in the case of cement and concrete, it's an investment in the future availability of low-carbon products the public sector uses to serve the public. As the fiscal sponsors of the bridges, buildings, roadways, and ports of entry that connect our entire economy, our federal, state, and municipal governments deploy 50-60% of all cement used in America. In the case of cement and concrete, industrial decarbonization directly affects the tools you have at your disposal to conduct the people’s business. The future can literally be paved with innovation wrought by policies you pass today.

You have commendably responded to this challenge. Your attention, oversight, legislation, and engagement have spurred significant progress. This is evident in how customers are increasingly engaging with companies like Sublime Systems and other pioneers in low-carbon...
cement and concrete production. With an existing eagerness to decarbonize, your efforts have provided established industry players and innovators alike, such as Sublime Systems, with crucial tools that mitigate risks and fund the foundational aspects of decarbonization.

Using power of the largest purchaser to buy clean and reduce embodied carbon

Visionary leadership has been demonstrated through both executive orders and congressional statutes, initiating the use of the world's largest buyer's power to adopt clean construction materials. The domain of procurement, inherently complex, is witnessing monumental changes. The introduction of additional funding, revamped procurement processes, and the adoption of preferential selection criteria prioritizing materials with reduced global warming potential are commendable steps.

The General Services Administration (GSA) recently implemented a congressional mandate, with remarkable speed, to allocate $2.15 billion for the procurement of low-embodied carbon (LEC) construction materials. This implementation aligns with the Federal Buy Clean Initiative. The GSA has earmarked projects nationwide to incorporate LEC materials: 16 large-scale capital projects utilizing $561 million, 99 smaller projects employing $507 million, and 39 Land Port of Entry Projects using $935 million.

Additionally, Congress allocated $2 billion to the Federal Highway Administration (FHWA) to promote the use of lower-emissions materials in highway construction and discourage the expansion of lanes for single-occupant vehicles. The FHWA Administrator will use these funds to incentivize or reimburse for the additional costs of lower-emissions materials.

Sublime Systems is rapidly expanding its manufacturing capabilities. Upon commercial availability, our materials are expected to rank in the top 1 percentile for low-embodied carbon. This positions the builders we supply to competitively bid for such programs. We urge Congress to consider making such initiatives a permanent aspect of government procurement for building materials.

EPA's assistance in developing robust environmental product declarations

Thanks to your legislative initiatives, the Environmental Protection Agency (EPA) is now funded to foster the development, standardization, and transparency of Environmental Product Declarations (EPDs) for construction materials and products. The EPA was directed to offer grants, technical assistance, and tools essential for quantifying the embodied carbon in construction materials. The agency has launched a grant program to aid businesses in
manufacturing construction materials and products. This program assists in developing and verifying EPDs and supports states, Indian Tribes, and nonprofit organizations aiding these businesses.

Sublime Systems is creating multiple products that could reduce embodied carbon in construction and plans to seek EPA support to develop EPDs. Even if we do not receive EPA support, it is clear that our economy's current approach to carbon accounting is limited and primarily driven by voluntary efforts from industry leaders committed to sustainability. Nonetheless, this program will introduce a level of rigor that lights the way for a genuine shift to clean manufacturing.

At Sublime we pride ourselves in our innovation that maximally avoids carbon emissions, rather than emitting and cleaning up after it with capture technology. A recent third-party validation showed our process shrinks the global warming potential of cement manufacturing by 90%, relative to today's OPC production (Appendix 2, Sublime Systems Press Release). We believe such carbon avoidance technologies provide the most durable, reliable solution in fighting climate change. We do not want to put carbon into the atmosphere if technology can enable us not to. And we know that our world will one day move on from fossil fuels, so we have designed a process that will not rely on them at all.

Scaling through the final "valley of death"

In the process of scaling large-scale industrial technology, companies often encounter a challenging phase known as the final 'valley of death.' During this phase, although the products are functional and commercially available, they may not be price-competitive until production is scaled up to the very large sizes needed to achieve economies of scale. Recent visionary actions by Congress have effectively bridged this valley, at least temporarily, offering crucial support to companies during this pivotal stage. The congressional formation of the Office of Clean Energy Demonstrations is an extraordinary mechanism.

Sublime Systems is inspired by the Department of Energy's (DOE) leadership in forming public-private cooperative agreements that scale with technology. These efforts began with foundational research funded by ARPA-E, advanced through small-scale, market-facing tests by the Industrial Efficiency and Decarbonization Office (IEDO), and further supported by large-scale project financing through the Loans Programs Office (LPO). Congressional leaders and the DOE have created a vital link between IEDO and LPO by establishing OCED. This office is specifically tailored to address the challenges of scaling from IEDO support to securing full commercial-scale loan guarantees.
Sublime Systems is currently engaged with OCED to explore a cooperative agreement for the development of our first commercially relevant facility. I’ll be back in a couple of weeks with key team members for the final interview to determine if there is a mutual fit. We are confident in our prospects to manifest congressional intent for this program. However, if we do not receive the grant funding, we believe it will primarily reflect just how many high-quality innovations are seeking this money. There were over 400 applications in the initial pool, with over 100 applications encouraged to proceed with the intensive application process. Regardless of Sublime’s outcome for this particular round of funding, I strongly urge congress to make this program permanent and generously fund it until the American economy is decarbonized. There are more projects, more jobs, more private-sector cost-sharing, and more decarbonization to be unlocked.

In addition to increased funding to scale industrial decarbonization demonstration projects, Department of Energy analysts have produced best-in-class reports on the market conditions, obstacles, and opportunities. DOE’s series of commercial liftoff reports explore the role of heavy industry in achieving our net zero by 2050 targets (Appendix 3, DOE Liftoff Report). The report on low carbon cement underscored that alternative production methods for cement — a category Sublime occupies — is a leading strategy to decarbonize cement and concrete, with rapid scaling in the 2030s after materials demonstrate cost and performance adhering to existing standards in the late 2020s. This is notable because the alternative production strategy is on the same viability pathway as carbon capture storage and utilization (CCUS) technologies, which have been around for many decades.

In this context, Sublime’s hypothesis is that the best investment of capital on decarbonization should increase production of cement. This increases domestic manufacturing, creates jobs, and comes with the added benefit of offsetting foreign imports, which account for 20 to 25% of the cement we use in America.

As a consequence of avoiding process emissions, Sublime avoids the need for costly CCUS and related infrastructure. We’re hearing significant concern from policymakers in geographies like California regarding the feasibility of building carbon dioxide transportation pipelines, which appears to be gaining broader awareness by government agencies.

Serving environmental and economic justice at the same time

Crosscutting a number of initiatives promoted both by Congress and the departments responsible for government spending on a clean energy transition is an extraordinary opportunity. There are communities across the nation that have historically been marginalized, burdened by pollution, and underfunded. Addressing these issues offers a chance to
simultaneously fulfill multiple policy objectives, including the transformation of heavy industrial manufacturing and support for marginalized communities.

A prime example of such policy innovation is Justice40. The aim of Justice40 is to rectify these disparities by: 1) directing a substantial portion of federal investment in sectors like clean energy, transit, affordable housing, training, and workforce development to the communities most in need; 2) mitigating environmental hazards in these areas and fostering healthier, more sustainable living conditions; 3) creating job and economic opportunities in green sectors, offering pathways to economic security and prosperity; 4) encouraging active participation of disadvantaged communities in decision-making to ensure tailored policy and investment outcomes; and 5) establishing mechanisms to monitor and assess the impact of these investments on underserved communities, ensuring accountability and effective resource utilization.

Sublime Systems was founded to have a swift and massive impact on global carbon dioxide emissions by decarbonizing cement. Delivering additional tangible benefits to neighbors near Sublime facilities is inherent to Sublime's broader mission in service to humanity and the planet. Sublime welcomes the opportunity to not only rethink a cleaner cement manufacturing process, but also the way communities engage with clean tech companies throughout the entire project lifecycle.

Aligned with Justice40, Sublime Systems prides itself in the fact that bringing our technology and product to market will create many high-quality American manufacturing jobs, many of will not require an advanced degree, making them accessible to a greater portion of our population that does not go to college. Today we operate a pilot-scale facility today can produce over 100 metric tons of cement annually, but we are ultimately working towards a 1-million-ton-per-year Megaplant, which would put us on the same scale as today's cement majors. A key step before that is our first commercial facility, which will produce 30,000 tons of our low-carbon cement annually and will commercially and technically de-risk our product.

In western Massachusetts, the anticipated site of this first-commercial low carbon cement manufacturing plant, Sublime and the local community are already working to serve that dual mission. Neither the climate crisis nor our neighbor's urgent health and human needs can wait for a sequenced approach to community organizing. So Sublime is working closely with city officials, "grasstop organizers," and citizens to ensure that every step of the way, from development, to construction, to operation, the demonstration plant delivers necessary, impactful, and intentional local benefits in direct correlation to the current and evolving needs of its community.
Sublime Systems incorporated the Climate and Economic Justice Screening Tool directly into our project siting criteria, alongside supply chain, feedstock, energy, and market considerations. This served as an initial proxy for “community demand,” (albeit potentially an inaccurate proxy). Sublime has confirmed actual community demand in the community for the workforce development and economic benefits generated by the proposed plant through direct and robust community engagement. Sublime’s leader in this engagement is a lifelong resident deeply knowledgeable about the social and political considerations relevant to the community. Sublime is heartened by sentiments voiced by local community organizers to “to think of this as your community when you come in” along with their commitment to helping Sublime integrate into the community.

In the context of being good neighbors, Sublime firmly believes that the update to American manufacturing and enrichment of local communities must be done without exacerbating cumulative exposure burdens. Not only do we drastically reduce CO₂ emissions, but our efficient electrochemical process completely avoids several operations known to emit locally harmful pollutants like NOₓ, SOₓ, dioxins, mercury, and combustion-related particulates.

Sublime has proactively engaged with unions for both construction and operations jobs to ensure the greatest benefit flows to the greatest number. We signed a strategic partnership agreement focused on high quality jobs with the United Steelworkers tied directly to OCED and the Community Benefits Plans they require as part of implementation. Further, a portion of Sublime’s advanced manufacturing technology jobs require experience in clean technology concepts and techniques not commonly found in today’s workforce or education curricula, and thus require additional workforce training that some unions are very well-positioned to support, as well as community colleges and public schools. We recognize we are but one of many innovative companies that can replicate this dynamic of advancing green technology and creating a new skilled workforce.

The decarbonization of American industry offers an unparalleled opportunity to spur an American manufacturing revival, in particular serving communities that have been long been overlooked and left behind in decades of offshoring and digital transformation. The production of novel clean industrial technology can spur high-quality American jobs for all skill and education levels. We have seen this already, with companies like Form Energy selecting a former West Virginia steel mill site as the location for its iron-air battery manufacturing plant — and bringing hundreds of new jobs for local residents with it. At Sublime we expect to create 70 high quality, benefits-bearing jobs with our first commercial facility, a fact recognized by recent state and local tax credits awarded to us. We are also partnering closely with the city to provided needed training and education to qualify residents for these jobs. We are excited about the potential to collaborate on this project with the Smithsonian Science Education Center, who will work with Holyoke and the surrounding districts to enrich their STEM learning in middle and high school.
Clean Energy Infrastructure Underpins Success

As Deputy Secretary of Energy David Turk says, industrial decarbonization will not have a silver bullet, and instead a “silver buckshot.” Central to the success of technologies like those developed by Sublime Systems and others involved in decarbonizing industry is the need for abundant, affordable electricity, water, and sustainable transportation. Planning for this infrastructure, which includes transmission, permitting, funding, tax incentives, and public sector partnerships, must consider the requirements of a dynamic and decarbonizing industrial sector.

As a pivotal player in the transition to a sustainable energy future, your role in supporting the expansion of clean energy generation, such as solar, wind, hydro, and nuclear power, is crucial. Your initiatives in providing financial incentives, like subsidies or tax breaks, play a key role in lowering the economic barriers associated with renewable energy projects. This support not only makes these projects more feasible for private investors but also aligns with broader environmental and sustainability goals.

We encourage the continued development and implementation of policies that efficiently integrate renewable energy into the national grid. Your efforts to streamline the permitting processes for renewable energy projects are noteworthy and essential. By simplifying and accelerating the approval processes, you are enabling quicker completion and operation of these projects.

According to the U.S. Energy Information Administration (EIA), the U.S. electric power sector operated about 74 gigawatts (GW) of solar photovoltaic capacity at the end of 2022, which is about three times the capacity at the end of 2017. Solar capacity is expected to expand by another 63 GW (84%) by the end of 2024, reflecting a substantial growth trajectory. Similarly, U.S. wind power capacity, which has grown by more than 60% since 2017 to about 143 GW, is forecasted to increase by approximately 12 GW over the next two years.

The trend in clean energy capacity addition in the U.S. is moving towards a greater share of electricity generation from renewable sources. Wind and solar accounted for 14% of U.S. electricity generation in 2022 and are forecasted to rise to 16% in 2023 and 18% in 2024. This increase is being driven primarily by new investments in solar and wind generating capacity.
Looking Ahead

Sublime Systems is grateful to this committee, your colleagues in Congress, and to the civil servants and appointees you oversee for the incredible work already under way. In the face of recent news of planetary boundaries being breached, it gives me hope that you are putting America in a global leadership position, brilliantly tying economic prosperity with climate action.

However, more work remains if we are to avoid the worst climate changing impacts such as mass crop failures, famine, disease, and mass human migration driven by un-survivable wet-bulb temperatures and ecosystem collapse. Your continued leadership and climate-aligned, economy-centered policies can accelerate the multi-domain, multi-sector changes we need.

Aligned with this, Sublime Systems is a founding member of the Decarbonized Cement and Concrete Alliance (DC2). DC2 is a coalition of innovative companies at the forefront of the global effort to reduce carbon emissions from cement and concrete. Our ten current members — Biomason, Blue Planet Systems, Brimstone, CarbonBuilt, Cheement, Fortera, Minus Materials, Queens Carbon, Sublime Systems, and Terra CO2 — are pioneering American venture- and private-sector-backed climate technology companies dedicated to delivering ultra-low carbon, carbon-neutral, and carbon-negative cement and concrete solutions. Collectively, our technologies rethink production processes and feedstocks, introduce novel materials, and utilize or sequester CO2 directly in concrete — all with a goal of decarbonizing the cement and concrete sector.

Together, we advocate for state and federal policies that accelerate the deployment and commercialization of decarbonized cement and concrete in North America. These policies are designed to capitalize on and expand the growing demand for low-carbon building materials from various stakeholders, including infrastructure owners, designers, contractors, ready-mix suppliers, and government agencies. A primary goal of our advocacy is to create and enhance avenues for scaling up the low-carbon cement and concrete industrial base, thereby delivering innovative products and creating U.S. manufacturing jobs essential to the net-zero economy (Appendix 4, Decarbonized Cement and Concrete Alliance Policy Presentation).

We believe additional policy, in addition to those already implemented, can have an even greater acceleration on industrial decarbonization:

Production tax credits: Per dollar, per kilogram of carbon abated, low-carbon cement and concrete is one of the most efficient taxpayer investments in avoiding carbon. Production Tax Credits have successfully supported the growth of the solar and wind energy industries, and the same approach will work to decarbonize cement and
concrete. We seek technology-agnostic production tax credits that recognize the production of materials that result in a lowered global warming potential of the final concrete products. Borrowing from successful congressional playbooks can further accelerate the adoption of low-carbon cement and concrete. The existing 45Q tax credit rewards technologies that capture and store carbon but does not reward technologies that avoid emitting carbon in the first place.

Demand support measures: As noted in the DOE Liftoff Report, “There is limited use of project finance for cement in the U.S. today; in conversations with numerous investors and large cement companies, no recent instance could be identified in which a project finance model was used. Moreover, large investment firms often have limited experience with cement projects and may not have analysts focused on cement companies, given their limited market capitalization.” As the ultimate end-user and buyer of over half of the cement used in the nation, the public sector has a role in making demand signal for low-carbon cement bankable for risk-averse investors and enable project finance at scale. The DOE notes that “large-end customers must develop a procurement model that provides greater offtake certainty for low-carbon cement plants. To de-risk projects sufficiently, such a model could need to have ... direct, legally enforceable contract between the cement plant and a creditworthy end customer ... guaranteed offtake for most or all of a plant’s output for the investment period, with some guarantee regarding price...”

Transformational procurement policies (not incremental): Procurement policies that are attempting to buy clean and accelerate innovation can be blunted by incrementalist, or supply-limited product offerings. We seek to dramatically decarbonize the industrial base, and as such support procurement rules that strengthen the public sector’s ability to anticipate, support, and reward transformational innovation over incremental improvements.

Early adopter platforms: We seek to use the power of the public sector to convene sandbox testing, pilot projects, and lab testing on behalf of the entire construction community to build confidence. DC2 recognizes that engineers and contractors have valid concerns about using materials manufactured using new processes. To this end, we would advocate for public sector initiatives that can help to make this validation process more efficient for the marketplace.

Aside from our work collectively with DC2, we see an additional opportunity to better connect this work to human health. As you know, EPA has long elevated industrial standards and protected public health by setting emissions standards under Section 111 of the Clean Air Act. Because EPA has never set greenhouse standards for cement, there is no clear public-health protecting mandate to align public and private investments for the industry. EPA informed the D.C. Circuit that it was researching its path forward over a decade ago. Now that new
technologies and decarbonization strategies, like Sublime’s, have come online and could provide a path forward, there is an opportunity to revisit this. We would urge the Committee to discuss this gap with EPA, and to advocate for standards that can elevate our collective approach in the coming years.

Conclusion

The fact that you are hosting this very hearing today on industrial decarbonization, drawing public attention and imagination toward what is possible and where we can go, is already quite impactful, and we thank you for that. Without a platform like this hearing, it would be very difficult for the right stakeholders to know about the promise and progress of industrial decarbonization and carbon avoidance technology, so we thank you again for this invitation.

I’d like to take a moment to recognize Jesse Benck, Brandon Williams, Joe Hicken, Glen Junor, Becky Gallagher, Greg Williams, Mike Corbett, Mike Stern, Cayman Somerville, Raffi Mardirosian, Erin Glabets, Mariya Layurova, Kyle Dominguez, Brian MacDonald, Mattias Ferber and my co-founder Yet-Ming Chiang and many team members I do not have time to acknowledge here. My testimony today is supported by an extraordinary team in addition to so much support from industry experts, financiers, think tanks, and lawmakers like you. Decarbonization of heavy industry is all-hands on deck, and I am energized and blessed to be working with such smart and impassioned people.

In closing, we know that the clean transition can be a just transition. It can also be a prosperous one, bringing an industrial boom the likes of which we have not seen in hundreds of years. We thank you for the work you are doing in this and for your time today — and we look forward to continued partnership.
Sublime Systems Receives Key ASTM Performance Designation for Its Ultra-Low Carbon Cement, Clearing the Path to Commercializing Fossil-Fuel-Free Cement at Scale

Third party verifies that Sublime Cement™ is as strong and durable as today’s ordinary portland cement (OPC), whose production makes more greenhouse gases than all passenger vehicles combined on planet Earth

September 15, 2023 08:00 AM Eastern Daylight Time

SOMERVILLE, Mass.--(BUSINESS WIRE)--Sublime Systems, developers of the only fossil-fuel-free, scalable, drop-in replacement for traditional cement in concrete, announced that its product has obtained ASTM C1157 designation. This industry standard specifies performance requirements across parameters including strength development, durability, and low shrinkage and cracking, and is being increasingly adopted as the industry moves towards performance-based standards. Obtaining the ASTM C1157 designation enables Sublime Cement™ to be used compliantly under major U.S. and international building codes, unlocking a path for it to replace OPC at scale and massively lower the carbon output of global construction infrastructure.

Cement production is currently responsible for 8 percent of global CO₂ emissions. About half the emissions come from the fossil-fuel-fired kilns needed to decompose limestone into lime, and the remaining CO₂ is emitted as a byproduct of this chemical reaction. Sublime Systems’ fossil-fuel-free process forgoes both these steps, replacing the legacy kilns with an electrochemical approach that makes cement at ambient temperature and uses renewable electricity to extract calcium and silicates from a diversity of non-carbonate raw materials. Sublime Cement™ manufactures with a “true-zero” (as opposed to net-zero) approach — it does not require offsets or additional carbon capture and storage (CCS) infrastructure to reduce emissions.

“Sublime was founded to have a swift, massive, and enduring impact on global CO₂ emissions, and we’ve designed our process to avoid CO₂ at every step, rather than polluting and cleaning up afterwards,” Sublime Co-Founder and CEO Leah Ellis, PhD said. “At the same time, we take our responsibility in manufacturing a next-generation product very seriously — we need to make a high-performing cement that is safe and easy to adopt. Data-driven performance-based standards, like ASTM C1157, allow us to solve the right problems: safety and
carbon avoidance, rather than adherence to a legacy recipe. Passing the ASTM C1157 standard is an important milestone in showing that Sublime’s low-carbon cement innovation integrates into the same quality concrete building material that the construction industry requires.

The ASTM C1157 specification is a performance-based standard, a category that is being widely adopted by a range of industries as they allow for novel materials that can be produced with minimal emissions while maintaining rigorous and data-driven standards for safety and performance. ASTM C1157 has more stringent strength requirements than older hydraulic cement standards, ASTM C150 for OPC and ASTM C595 for blended cements, both of which contain prescriptive and performance requirements.

To achieve the ASTM C1157 compliance, Sublime provided its cement to a Cement and Concrete Reference Laboratory-certified third-party for testing. Sublime Cement™ — which is based on the recipe for Roman cement — exceeded all ASTM C1157 General Use performance requirements and outperformed many samples of OPC in ultimate strength and durability. These results suggest the extension of the final product’s long-term service life relative to today’s industry standard. Sublime is currently conducting additional tests measuring its cement’s performance in concrete through third-party ready-mix concrete labs and in field use cases. Sublime’s operational pilot facility has a current design capacity of >100 tonnes of cement per year, and the company is commissioning its first commercial plant for 2025.

"Sublime is on course to make CO₂-free cement that performs better and costs less than what pours out of concrete trucks today," said Clay Dumas, general partner at Lowercarbon Capital. "Now, the ASTM C1157 designation paves the way for global adoption of the world’s cleanest cement."

It is estimated that 70% of the infrastructure that will exist in 2050 to shelter the world’s growing urban population remains unbuilt. To balance such global construction goals with emissions reductions targets means a low-carbon approach like Sublime’s becomes essential to not only meet this demand but also surpass the performance of current standards. It is critical to gain the confidence of the entire ecosystem of buyers in next-generation cement, spanning ready-mix concrete suppliers, concrete contractors, architects, engineers, general contractors, building owners, and government agencies. Sublime is in discussions with customers across these constituencies and is actively planning for its first field pours in Q4 2023.

"The global construction industry understands the importance of decarbonization of cement and concrete but has to balance this with the responsibility of executing large infrastructure projects that satisfy current specifications and maintain durability requirements," said Jim Carreira, technical director at Boston Sand and Gravel. "Sublime’s ASTM C1157 compliance is an important step in increasing the industry’s confidence in shifting towards a drastically decarbonized material that performs like the material our industry currently relies on."

"Thoughtful owners, designers, and contractors have long recognized that performance-oriented specifications asking for what is needed, instead of telling the suppliers what to do, result in the better value solutions," said Don Davies, a structural engineering leader with projects in 18 countries and more than 50 major metropolitan centers. "With proper testing and data back-up, we have long seen ASTM C595 and the fully performance-oriented ASTM C1157 cements as the low carbon keys to our future. I am personally excited with how these next-generation materials, like the C1157 Sublime Cement™, will more rapidly slash emissions in concrete."

Sublime continues to add to its coalition of partners ready and willing to adopt low-carbon cements and decarbonize their supply chains. To learn about partnership opportunities for integrating Sublime Cement™ into your projects, connect with our team at partnerships@sublime-systems.com.

About Sublime Systems
Sublime Systems is on a mission to have a swift and massive impact on global CO₂ emissions with a breakthrough process that can manufacture cement without fossil fuels or limestone. Sublime replaces the industry’s legacy kilns with an electrochemical process that makes cement at ambient temperature, extracting calcium and silicates from an abundance of raw materials to make cement. This novel approach bypasses both CO₂ process emissions and heating emissions, without the need for post-combustion carbon capture, producing ASTM C1157-compliant Sublime Cement™ as a drop-in replacement for ordinary portland cement in concrete. Sublime was founded at MIT by Leah Ellis, PhD, and Prof. Yet-Ming Chiang, both respected experts in materials science, electrochemical systems, and sustainability research. The company has raised more than $50M from a leading consortium of climate tech investors, ARPA-E funding, and strategic investor Siam Cement Group, the largest cement producer in Southeast Asia. It currently operates a pilot plant with a >100-tonnes-per-year production capacity. Learn more at sublime-systems.com.

Contacts
Media
Erin Glabets
Head of Communications
media@sublime-systems.com

Social Media Profiles

Sublime Systems on Twitter

Sublime Systems on LinkedIn
Sublime Systems Receives Life Cycle Assessment Validating its Electrified Cement Manufacturing Process Enables >90% Greenhouse Gas Emissions Reduction

A screening life cycle assessment conducted by Climate Earth, the leading provider of environmental product declarations for the concrete industry, validated Sublime’s path to drastically reducing the carbon footprint of cement relative to today’s ordinary portland cement.

October 26, 2023 08:00 AM Eastern Daylight Time

SOMERVILLE, Mass.--(BUSINESS WIRE)--Sublime Systems, developers of the only fossil-fuel-free, scalable, drop-in replacement for traditional cement in concrete, announced a screening life cycle assessment (LCA) validating its process can eliminate more than 90% of the global warming potential (GWP) of cement manufacturing, when compared to today’s ordinary portland cement (OPC). Climate Earth, the leading provider of environmental product declarations (EPDs) for the concrete industry, conducted this LCA according to a widely accepted industry method, avoiding controversial and unproven offset methodologies frequently used to enable the continued burning of fossil fuels — such as carbon capture, forestry credits, co-product mineralization, and lifetime CO₂ absorption.

The cradle-to-gate screening LCA leverages engineering estimates of Sublime Systems’ full-scale commercial manufacturing process and was conducted in conformance with ISO 21930, which is used for the development of EPDs for construction products and services. It found Sublime’s manufacturing process resulted in a GWP of 72 kg CO₂/tonne for a 100% Sublime Cement™ blend, compared to the 922 kg CO₂/tonne GWP found in the EPD for industry-wide average OPC in the United States. The remaining emissions were largely related to the mining and transportation of feedstocks and waste and wastewater treatment, processes that are primarily upstream and downstream of Sublime’s core manufacturing innovations. Sublime’s screening LCA also showed drastically reduced acidification and eutrophication potentials (among others) without increased water consumption, reflecting a lower environmental footprint and permitting timeline compared to today’s OPC.
“As our company developed this breakthrough process, we were mindful that the construction industry wouldn’t respond well to shining white knights with splashy in-house PowerPoints claiming they’re saving the world,” said Sublime Systems CEO and Co-Founder, Leah Ellis, PhD. “Seeing is believing, and we are grateful to be partnering with Climate Earth, the leader in these critical analyses for the concrete industry. Apples-to-apples comparisons using rigorous industry-accepted standards are foundational to driving real climate solutions and giving our stakeholders confidence in Sublime Cement™ as a powerful decarbonization tool in their arsenal.”

Sublime Systems is advancing a fully electrified process for manufacturing cement without requiring the use of fossil fuels or limestone. This carbon-avoidance approach harnesses clean, renewable sources of electricity and a wide range of calcium-containing raw materials to produce the same final hardened phase in concrete that the global construction industry requires today. Sublime Cement™ does not rely on carbon capture and storage infrastructure to reduce CO₂ emissions, enabling cost parity to OPC when produced at scale — without dependence on carbon credits or carbon penalties.

“Sublime has shown incredible rigor in specifying their manufacturing process, enabling our team to confidently quantify the environmental impact of their electrochemical cement manufacturing process,” said Climate Earth President and CEO, Chris Erickson. “We are excited to continue working with the company on future EPDs that will help accelerate industry adoption of Sublime Cement™ as a next-generation, low-carbon building material of the future.”

Sublime Systems is currently engaging its construction industry partners for its first major construction projects this quarter and is actively planning its first commercial facility, which will produce tens of thousands of metric tons of low-carbon cement per year. Sublime Cement™ functions as a fully drop-in replacement for OPC in concrete today and complies with ASTM C1157, a widely adopted fully performance-based industry specification for hydraulic cement. To learn more about integrating Sublime Cement™ into your construction projects, contact partnerships@sublime-systems.com.

About Sublime Systems

Sublime Systems is on a mission to have a swift, massive, and enduring impact on global CO₂ emissions with a breakthrough process that can manufacture cement without fossil fuels or limestone. Sublime replaces the industry’s legacy kilns with an electrochemical process that makes cement at ambient temperature, extracting calcium and silicates from an abundance of raw materials to make cement. This novel approach bypasses both CO₂ process emissions and heating emissions, without the need for post-combustion carbon capture, producing ASTM C1157-compliant Sublime Cement™ as a drop-in replacement for ordinary portland cement in concrete. Sublime was founded at MIT by Dr. Leah Ellis and Prof. Yet-Ming Chiang, both respected experts in materials science, electrochemical systems, and sustainability research. The company has raised more than $50M from a leading consortium of climate tech investors, ARPA-E funding, and strategic investor Siam Cement Group, the largest cement producer in Southeast Asia. It currently operates a pilot plant with a >100-tonnes-per-year production capacity. Learn more at sublime-systems.com.

About Climate Earth

Climate Earth is the first and only global provider of on-demand, digital EPDs and business intelligence tools for the concrete industry. Climate Earth’s mission is to increase transparency and help concrete producers accelerate product innovation for low carbon concrete with on-demand EPDs and advanced digital tools that measure, analyze, and project environmental impacts. Founded in 2008 and based in Richmond, California, Climate Earth systems have automated EPD creation for over 900 ready mix, block and cement plants worldwide and have generated nearly 60,000 third party verified EPDs. For more information visit: www.climateearth.com.
Contacts

Media

Erin Glabets
Head of Communications, Sublime Systems
media@sublime-systems.com

Jules Conde
Marketing Manager, Climate Earth
Jules@Climateearth.com

Social Media Profiles

Sublime Systems on Twitter

Sublime Systems on LinkedIn
Comments
The Department of Energy welcomes input and feedback on the contents of this Pathway to Commercial Liftoff. Please direct all inquiries and input to Liftoff@hq.doe.gov. Input and feedback should not include business-sensitive information, trade secrets, proprietary or otherwise confidential information. Please note that input and feedback provided are subject to the Freedom of Information Act.

Authors
Authors of the Pathway to Commerical Liftoff Industrial Decarbonization:

Loan Programs Office: Sam Goldman
Industrial Efficiency and Decarbonization Office: Paul Majsztrik, Isabelle Sgro Rojas (Energetics)
Office of Fossil Energy and Carbon Management: Mani Gavvalapalli, Raj Gaikwad, Tony Feric
Office of Manufacturing and Energy Supply Chains: Kelly Visconti
Office of Policy: Brandon McMurtry

Cross-cutting Department of Energy leadership for the Pathway to Commercial Liftoff effort:

Office of Technology Transitions: Vanessa Chan, Lucia Tian
Office of Clean Energy Demonstrations: Kelly Cummins, Melissa Klembara, Theresa Christian
Office of Policy: Neelesh Nerurkar
Loan Programs Office: Jigar Shah, Jonah Wagner

Acknowledgments
The authors would like to acknowledge analytical support from Argonne National Laboratory and McKinsey and Company, as well as valuable guidance and input provided during the preparation of this Pathway to Commercial Liftoff from:

Office of Clean Energy Demonstrations: Maressa Brennan, Kristen Hoesch, Katie Harkless, G. Jeremy Leong
Office of Technology Transitions: Katheryn Scott
Office of Energy Efficiency and Renewable Energy: Carolyn Snyder
Industrial Efficiency and Decarbonization Office: Avi Shultz, Joe Cresko
Advanced Materials and Manufacturing Technologies Office: Nick Lalena
Office of Fossil Energy and Carbon Management: Bradford Crabtree, Jennifer Wilcox, Rory Jacobson
Loan Programs Office: Richa Chaturvedi, Anna Blaustein
Office of Economic Impact and Diversity: Shalanda Baker, Sara Wylie
Bioenergy Technology Office: Valerie Reed, Jay Fitzgerald
Office of Manufacturing and Energy Supply Chains: Giulia Siccardo
Hydrogen and Fuel Cell Technologies Office: Sunita Satyapal, Neha Rustagi, Tomas Greene
Office of Policy: Maya Goodwin
Argonne National Laboratory: Aymeric Rousseau
Table of Contents

Purpose of this report ... 1

Glossary .. 2

Executive Summary .. 4

Six key challenges must be overcome to scale technologies ... 6

Challenges are real but solvable. Six priority solutions could be pursued 7

Chapter 1: Introduction .. 8

Chapter 2: Current state and decarbonization challenge ... 9

Section 2.a: Sector overview – Introduction to cement ... 9

Section 2.a.i: Cement production process ... 9

Section 2.a.ii: U.S. market context .. 11

Section 2.a.iii: U.S. cement production footprint .. 11

Section 2.b: Technology landscape .. 12

Section 2.b.i: Cross-cutting measures ... 13

Section 2.b.ii: Heat measures .. 14

Section 2.b.iii: Process measures .. 15

Section 2.b.iv: Future technology landscape .. 16

Section 2.c: Market context: Structure, economics, and implications for deployment 16

Section 2.c.i: Cement market structure ... 17

Section 2.c.ii: Product segmentation .. 17

Section 2.c.iii: Baseline economics ... 18

Section 2.c.iv: Market attributes and implications for deployment ... 18

Section 2.d: U.S. industry momentum ... 19
Purpose of this report

These Pathway to Commercial Liftoff Reports aim to establish a common fact base and ongoing dialogue with the private sector around the path to commercial Liftoff for critical clean energy technologies across core U.S. industries. Their goal is to catalyze more rapid and coordinated action across the industry and the full technology value chain.

This Pathway to Commercial Liftoff report specifically focuses on decarbonizing cement production. It is one report in a multi-part series focused on industrial decarbonization. The Industrial Decarbonization Liftoff series provides an overview of the pathways to decarbonization across the eight industrial sectors of focus in the Inflation Reduction Act (IRA): chemicals, refining, iron and steel, food and beverage processing, pulp and paper, cement, aluminum, and glass. DOE has conducted deep analysis and developed reports in the Liftoff series focusing on chemicals & refining and cement. All other industrial sectors have been covered in the Pathway to Commercial Liftoff: Industrial Decarbonization report.

Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARL(^2)</td>
<td>Adoption readiness level (1–9); Represents important factors for private sector uptake beyond technology readiness, including value proposition, market acceptance, resource maturity, and license to operate</td>
</tr>
<tr>
<td>CAGR</td>
<td>Compound annual growth rate</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital expenditure</td>
</tr>
<tr>
<td>CCUS(^3)</td>
<td>Carbon capture, utilization, and storage</td>
</tr>
<tr>
<td>Commercial Liftoff</td>
<td>“Liftoff” represents the point where solutions become largely self-sustaining markets that do not depend on significant levels of public capital and instead attract private capital with a wide range of risk</td>
</tr>
<tr>
<td>Demonstration stage</td>
<td>Technology in a stage of the RDD&D continuum where the objective is to determine the technical and commercial feasibility of new technologies</td>
</tr>
<tr>
<td>Deployable stage</td>
<td>Technology in a stage of the RDD&D continuum where the objective is to develop commercial deployments</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation (state or federal)</td>
</tr>
<tr>
<td>EEJ</td>
<td>Energy and environmental justice</td>
</tr>
<tr>
<td>Embodied carbon</td>
<td>Emissions released during the life cycle of a material, including through extraction of raw materials, manufacturing, transportation, utilization, and end of life</td>
</tr>
<tr>
<td>EPD</td>
<td>Environmental product declaration (assessment and declaration of a product’s environmental impact, particularly its embodied carbon content)</td>
</tr>
<tr>
<td>FECM</td>
<td>DOE Office of Fossil Energy and Carbon Management</td>
</tr>
<tr>
<td>FOAK</td>
<td>First of a kind</td>
</tr>
<tr>
<td>GCCA</td>
<td>Global Cement and Concrete Association</td>
</tr>
<tr>
<td>IEDO</td>
<td>DOE Industrial Efficiency and Decarbonization Office</td>
</tr>
<tr>
<td>KTPA</td>
<td>Thousand tonnes per year</td>
</tr>
<tr>
<td>LCA</td>
<td>Life cycle assessment (assessment of environmental impact, particularly emissions, from a product’s full life cycle)</td>
</tr>
<tr>
<td>MTPA</td>
<td>Million tonnes per year</td>
</tr>
<tr>
<td>NOAK</td>
<td>Nth of a kind</td>
</tr>
</tbody>
</table>

\(^2\) Adoption Readiness Levels (ARL): A Complement to TRL | Department of Energy

\(^3\) This report typically refers to “Carbon Capture, Utilization, and Sequestration” (CCUS) because of the significant potential for carbon utilization approaches in cement and construction materials. Where only sequestration is considered, “CCS” is used. Where only utilization is considered, “CCU” is used.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV</td>
<td>Net present value</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland Cement (traditional Portland cement formulation, typically composed of ~95% clinker and ~5% gypsum)</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operating expenditure</td>
</tr>
<tr>
<td>PCA</td>
<td>Portland Cement Association</td>
</tr>
<tr>
<td>PLC</td>
<td>Portland Limestone Cement (blended cement in which up to 15% of clinker is substituted with ground limestone)</td>
</tr>
<tr>
<td>RDD&D</td>
<td>Research, development, demonstration, and deployment (RDD&D) continuum—defines the path to commercialization where a technology starts as an innovative idea in research, moves to development where the first prototype is created, proceeds to demonstration where the solution is tested in the real world and ending with commercial-scale deployment. Although RDD&D is a continuum, the pathways across stages are not always linear, and technologies may need to go back to earlier stages to be refined.</td>
</tr>
<tr>
<td>R&D / Pilot stage</td>
<td>Technology in a stage of the RDD&D continuum where the objective is to discover and determine the technical feasibility of new technologies in a lab or in small pilots</td>
</tr>
<tr>
<td>TRL⁴</td>
<td>Technology readiness level (1–9); Metric used for describing technology maturity. It is a measure used by many U.S. government agencies to assess the maturity of evolving technologies (e.g., materials, components, devices) before incorporating that technology into a system or subsystem</td>
</tr>
<tr>
<td>45Q</td>
<td>Tax incentive that encourages carbon capture, utilization, and storage (CCUS) projects</td>
</tr>
<tr>
<td>45V</td>
<td>IRA tax incentive that encourages the production of clean hydrogen</td>
</tr>
</tbody>
</table>

⁴ Technology Readiness Assessment Guide | Department of Energy
Executive Summary

The U.S. cement industry must accelerate decarbonization progress dramatically to keep pace with sector-wide net-zero goals. Cement represents ~7–8% of global CO2 emissions and ~1–2% of U.S. CO2 emissions (~70 MT CO2/year). Scaling green cement will be critical for the U.S. to achieve net zero overall and will position the U.S. to lead global efforts to decarbonize the sector, including through deployment of U.S.-developed technologies.

Many potential decarbonization approaches are emerging, but nearly all are in pilot stage today in the U.S. and face challenging paths to scale. Combined investment across these approaches would need to reach ~$5–20B cumulatively by 2030 and ~$60–120B cumulatively by 2050 to achieve Liftoff of key technologies and then full decarbonization of the cement industry:

- **An initial set of clinker substitution approaches, alternative fuels, and efficiency measures could abate ~30% of emissions by the early 2030s and ~40% by 2050, while delivering $1B+ of annual savings to industry, if deployed aggressively.** These approaches are broadly high TRL, deployment-ready, and economically viable today. Scale-up could represent a capital formation opportunity of ~$3-8B.

- **Abating the remaining ~60-70% of emissions by 2050 will require approaches that have more difficult economics and still must be demonstrated at commercial scale—namely, carbon capture, utilization, and storage (CCUS) on existing infrastructure and alternative cement production methods.** CCUS could require ~$35–75 in cost improvements or additional revenue per tonne of CO2 and ~$25–55 per tonne of cement to be economically viable with the 45Q tax credit, though there is potential for alternative carbon-capture technologies at lower TRL today to achieve significant cost reductions. Alternative production methods could require $0.5–1.0B in capital expenditure (CAPEX) per plant and still need to validate technology performance and business models at commercial scale. Deployment of these technologies to decarbonize the full cement industrial base could represent a ~$55–110B total capital formation opportunity by 2050.

- **Other measures, including alternative binder chemistries to traditional cements, remain more nascent and must achieve further technological maturity, improved economics, and customer acceptance to deploy.**

Liftoff for all technologies will hinge on creating a strong demand signal from coordinated low-carbon procurement—a signal that may come from the government through public procurement. This demand signal will be vital to incentivize the rapid uptake of new technologies, drive aggressive deployment, and mobilize capital at the required scale. Half of U.S. cement demand is driven by federal and state procurement. With their commanding market share, government agencies and large private buyers are in the leading position to send this demand signal and transform the market.

Supported by low-carbon procurement, technologies could follow four parallel ‘tracks’ to Liftoff by 2050:

- Rapid scale-up of clinker substitution, alternative fuels, and efficiency measures from 2023 through the early 2030s, accelerated by low-carbon procurement standards and high-profile demonstrations of low-clinker cement and concrete blends.

5 Capital formation sizing methodology is available in the appendix.
6 Further scale-up of these technologies through 2050 could abate ~40% of emissions.
7 In general, this report assumes projects and technologies are economically viable if they can clear a 10% internal rate of return and/or are competitive economically with existing production methods and products.
8 This report typically refers to “Carbon Capture, Utilization, and Sequestration” (CCUS) because of the significant potential for carbon utilization approaches in cement and construction materials. Where only sequestration is considered, “CCS” is used. Where only utilization is considered, “CCU” is used.
9 Based on modeling for CCS specifically. CCU is also considered in the body of the report.
Pathways to Commercial Liftoff: Low-Carbon Cement

- **Full-scale deployment of CCUS retrofits starting in the 2030s**, following initial commercial-scale demonstrations in the mid-to-late 2020s. This deployment would be propelled by coordinated procurement from government and large private buyers, structured to enable investment at the multibillion-dollar scale required.

- **Commercial-scale deployment of alternative production methods for traditional cement products in the 2030s**, likewise following initial demonstrations and with multibillion-dollar capital formation enabled by coordinated procurement.

- **Longer-term scale-up of fundamental alternatives to traditional cement chemistries**, beginning in non-structural, pre-cast, and lower-risk niches and building market share on a longer timeline as standards are updated, market comfort grows, and supply becomes increasingly reliable.

Other emerging technologies are further out from commercialization, but offer promising opportunities for ongoing R&D investment.

Internationally, including in the developing world, pathways to cement decarbonization hinge on large-scale deployment of technologies like CCUS that today are prohibitively expensive outside of wealthy countries. **The U.S. is particularly well-positioned to commercialize and export two business models that could be transformative for global cement decarbonization:**

- **Low-cost CCUS** enabled by a combination of cost reductions from learning effects, commercialization of alternative low-cost capture technologies, and high-value carbon utilization applications.

- **Alternative low-carbon production methods and alternative chemistries** that can achieve cost-parity with or even cost-advantage over traditional cement plants.
Figure ES.1. Four-track pathway to Liftoff

Low-carbon cement: Four-track pathway to Liftoff

<table>
<thead>
<tr>
<th>Technology 'track' (illustrative examples, not exhaustive)</th>
<th>Pathway to commercial liftoff</th>
<th>Capital formation required by 2050</th>
<th>Abatement potential by 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Currently deployable measures</td>
<td>Rapid deployment, incentivized by demand signal from large buyers and enabled by accelerated validation of low-carbon blends</td>
<td>~$5-10B</td>
<td>~30-40%</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative fuels (subject to approach; other measures in these categories require further R&D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. CCUS</td>
<td>Initial ~3-5 demonstrations enabled by R&D and government support</td>
<td>~$5-110B</td>
<td>~60-70%</td>
</tr>
<tr>
<td>CCUS retrofits and integration into new-build plants</td>
<td>Accelerated buildout of CCUS, enabled by R&D, cost reductions, and coordinated procurement to create investable demand signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Alternative production methods (drop-in for traditional cement products)</td>
<td>Initial ~3-5 greenfield demonstration plants enabled by government support</td>
<td>~$5-110B</td>
<td>~60-70%</td>
</tr>
<tr>
<td>Alternative feedstocks</td>
<td>Accelerated buildout of greenfield plants, enabled by cost reductions and coordinated procurement to create investable demand signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternatives to traditional rotary kiln production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Alternative binder chemistries</td>
<td>Initial market share in non-structural niches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative chemistries to traditional clinkers</td>
<td>Testing and validation, updated standards, and market education to enable wider deployment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply chain expands to meet growing demand</td>
<td>Liftoff achieved in broader market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied R&D opportunities on emerging technologies (not in scope for this report)</td>
<td>Ongoing R&D investment to support rollout of key technologies (e.g., novel carbon capture approaches on dilute streams, other novel materials for clinker substitution, improved plant efficiency measures)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra-stage novel SCMs and binders</td>
<td>Long-term R&D investment in ‘next horizon’ technologies (e.g., electrification of kiln and precalciner, >20% hydrogen fuel blends)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher-hydrogen fuel blends and electrification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative CCUS approaches</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Capital formation opportunity was estimated according to the methodology detailed in Appendix C and is based on the estimated CAPEX requirement to scale both currently deployable measures and CCUS or alternative production methods across the entire footprint of U.S. cement plants. 2. Abatement potential was estimated using the methodology detailed in Appendix A and assumes the first 30–40% of emissions can be abated by a deployment-ready subset of clinker substitution, alternative fuels, and efficiency measures, with the remaining 60–70% addressed by CCUS and alternative production methods.

Six key challenges must be overcome to scale technologies:
1. The market lacks uniform standards to define low-carbon materials and enable informed procurement.
2. The sector has a ~10 to 20-year adoption cycle for new blends and materials—both from long lead time needed to update standards and a long customer-adoption cycle.
3. The current procurement model is not structured to attract capital at required scale.
4. Decarbonization approaches may come with structural cost increases.
Key technologies have performance and cost uncertainty. Others are at lower TRLs and must make further R&D progress to deploy.

Projects may lack support from local communities and the public (particularly CCUS projects because of environmental and safety concerns).

Challenges are real but solvable. Six priority solutions could be pursued:

2. Make targeted interventions to compress the adoption cycle for new blends and materials to ~5–10 years, including:
 - Investing in accelerated testing and validation,
 - Engaging key customers to facilitate the expanded use of low-carbon materials, including adopting performance-based standards, and
 - Providing technical and financial assistance to facilitate adoption in the broader value chain (e.g., small ready-mix companies, subcontractors).

3. Develop alternative procurement models that provide cement projects with firm, long-term offtake commitments to attract risk-averse capital.

4. Develop policy and market models that offset structural costs, including:
 - Providing policy support to offset challenging economics,
 - Supporting premiums with coordinated procurement in the public and private sectors, and
 - Requiring the use of low-carbon materials in construction regulations.

5. For pre-deployment technologies, provide continuing support to accelerate progress along the RDD&D continuum, including:
 - Supporting early project development and creation of archetypal business models and terms for technologies at a higher TRL today, and
 - Continuing to invest in transformative R&D for technologies at a lower TRL today.

6. Implement robust community benefits plans and agreements that are responsive to public concerns, mitigate potential harms, and ensure accountability.

DOE, together with other federal agencies and state and local governments, has tools to address many of these issues and is committed to working with communities and the private sector to accelerate the deployment of green cement technologies, establish the U.S. as a global leader in cement decarbonization, and meet the country’s climate, economic, and environmental justice goals.

Government action will play a critical role in validating new approaches and creating strong demand signals. Bold action is also needed by the private sector, including producers, large-scale customers, and financial institutions, which fund them both, to scale these technologies and fundamentally transform the industry. Companies that move first will be best positioned to capitalize on the potential opportunity to capture demand from low-carbon procurement and position themselves to compete in a decarbonized market.
Chapter 1: Introduction

To decarbonize the sector by 2050, the U.S. must deploy novel technologies at all 98 existing U.S. cement plants and at all new-build plants. New technologies must also be exported internationally to address the ~7–8% of global CO2 emissions from cement. This report provides a “Pathway to Liftoff” for these key technologies. “Liftoff” represents the point where solutions become largely self-sustaining and can achieve commercial scale without depending on significant levels of public capital, instead attracting private capital with appetite for a wide range of risk.

- **Chapter 2** provides an overview of the current state and emissions profile of the U.S. cement industry, emerging technologies for decarbonization, and structural factors shaping deployment potential.
- **Chapter 3** outlines technology-specific business models, economic and other market dynamics, and the ‘tracks’ different technologies could follow to scale.
- **Chapter 4** addresses current challenges and potential solutions to unlock Liftoff.
- **Chapter 5** outlines key metrics and milestones along the Pathway.

This report is informed by 60+ interviews and conversations with experts and stakeholders from 40+ companies and organizations. Interviewees cover the entirety of the market ecosystem, including large cement and building-materials companies, start-ups, trade associations covering all major segments of the value chain, investors, and federal and state agencies that are large consumers of cement and concrete. All insights have been aggregated and anonymized so as not to be reflective of any single company or other stakeholder. Additional insight is provided by DOE experts, published studies, and decarbonization roadmaps by DOE, other government agencies, and various industry and third-party academic and research organizations.

This report focuses chiefly on decarbonizing primary cement production (i.e., the measures taken inside the fence line of cement plants), but it will be vital to decarbonize the concrete and construction value chain more broadly and look at emissions over the full life cycle of cement and concrete products.

This effort is technology- and business-model agnostic. It is not meant to comprehensively evaluate all potential technologies and business models that could be deployed. A vast array of different technologies may ultimately develop to meet the needs of a net-zero sector. Indeed, 40+ start-ups were identified in this sector alone, in addition to the various approaches under consideration by already-established cement players.

This report draws on and complements DOE’s existing Industrial Decarbonization Roadmap by extending its deep dive into cement and further exploring the market and economic dynamics implicated in a rapid scale-up. Likewise, this report complements many ongoing efforts across federal and state governments to accelerate these technologies’ development, commercialization, and deployment.
Chapter 2: Current state and decarbonization challenge

Key takeaways

- **Cement production accounts for ~7–8% of global CO2 emissions and ~70M tonnes (~1%) of U.S. CO2 emissions per year.** Decarbonizing the sector will be critical for achieving net zero. By developing, deploying, and commercializing the key technologies domestically and exporting them internationally, the U.S. can take a leading role in global decarbonization.

- **The technical challenge is substantial: ~85% of cement emissions come from the calcination process or high-temperature heat sources.** Getting to net zero will require novel decarbonization measures, many of which do not exist yet at scale. A wide variety of approaches are emerging across different stages of technological and adoption readiness.

- **Government procurement drives ~50% of U.S. demand, giving the public sector an outsized role in accelerating decarbonization.** Yet the cement value chain structure complicates decarbonization efforts: cement is bought through multiple layers of intermediaries, challenging efforts to create a clear demand signal. Other features of the cement market further constrain decarbonization approaches.

- **Industry momentum has been slower to build in the U.S. than in other parts of the world, particularly Europe. However, activity is beginning to accelerate, especially in response to the Inflation Reduction Act (IRA).** Established cement companies have set decarbonization targets and are exploring options, a robust start-up ecosystem has emerged with 40+ companies developing novel cement products, and commercial-scale demonstrations of key technologies are planned for the mid- to late-2020s, facilitated by government support.

Section 2.a: Sector overview – Introduction to cement

Cement is the key ingredient in concrete, the most consumed human-made material on Earth, and is a vital upstream input for housing, built infrastructure, and a wide range of critical construction projects. The market today faces challenges meeting intertwined climate and economic development goals. Producing the 4B+ tonnes of cement needed to meet global demand for concrete each year is associated with ~7–8% of annual CO2 emissions. Global consumption will grow further as developing countries continue to industrialize and urbanize, and cement will be a critical input for infrastructure projects needed as part of the global energy transition. Cement emissions cannot grow linearly if the sector is to remain on track for decarbonization. In the U.S., the cement sector accounts for ~70M tonnes of annual emissions, ~1–2% of total CO2 emissions, and ~8% of emissions in the industrial sectors of focus under the Inflation Reduction Act.

Decarbonizing domestic production will be critical for achieving net zero in the U.S. and creates an opportunity for the U.S. to lead globally on innovation, commercialization, and export of the next generation of low-carbon cement technologies.

Section 2.a.i: Cement production process

Cement is a binder mixed with water and aggregates like sand and gravel to produce concrete. Portland cement, the most widely used type, was developed in the early 1800s and is a mixture of calcium silicates and other compounds derived from limestone and silica sources that hardens when it reacts with water.

10 According to the U.S. Geological Survey, in 2022, China was the largest consumer of cement by far, accounting for 51% of the market. India was the second largest, with 8% of the market.
The key ingredient in Portland cement is clinker, a binder material made by sintering limestone and aluminosilicate materials like clay at high heat. Clinker production accounts for the vast majority of emissions in the overall process.

Cement production follows a basic three-step model (Figure 2.1):

- **Extraction and preparation of raw materials.** Limestone and other raw materials like clay are quarried, crushed, milled, mixed, and ground to a sufficiently small size.

- **Production of clinker.** The limestone and raw materials mixture is typically preheated in a multi-stage precalciner and fed into a massive cylindrical rotary kiln heated to ~1,400–1,450°C. Reactions in the kiln produce clinker.

- **Production of cement.** Clinker is cooled, ground to a fine powder, and mixed with gypsum, limestone, and potentially other additives in specific amounts (defined by standards) to form the final cement mix for sale.

85% percent of emissions come from clinker production and are intrinsic to the chemical process or related to the high heat at which it takes place (Figure 2.1):

- 51% of total emissions come from the calcination process used to make clinker, in which CO2 is produced as a byproduct of quicklime (CaO) extraction from limestone (calcium carbonate, CaCO₃) in the kiln.

- Another 34% of total emissions come from the fuels used to generate high heat at the kiln—plants typically use coal and coke today and increasingly burn natural gas and some wastes (e.g., tires).

Figure 2.1. Cement production process

Notes:

Section 2.a.ii: U.S. market context

The U.S. is the fourth largest market for cement in the world. The U.S. consumed ~120M tonnes and produced ~95M tonnes of cement in 2022, with total sales worth an estimated $14.6B and an average price of $130 per tonne. \(^{xvii}\) Domestic production is forecast to grow by ~31% to 124M tonnes in 2050 (~1% CAGR from 2023–50). \(^{xviii}\)

The U.S. also imports ~24M tonnes of cement annually. 38% percent of cement imports come from nearby suppliers in Canada and Mexico, but 62% comes from countries like Turkey and Greece, typically where suppliers with access to water transport can take advantage of the low freight cost to ship cement by boat and barge. \(^{xix}\)

Section 2.a.iii: U.S. cement production footprint

Today, the U.S. has 98 total cement plants that must be decarbonized to achieve net zero in the sector—96 in 34 states and two in Puerto Rico. \(^{xx}\) Just four states (Texas, Missouri, California, and Florida) account for ~43% of shipped cement. \(^{xvi}\) Plants are sited close to population centers and the markets they serve to minimize transport costs.

U.S. cement plants, excluding capacity in Puerto Rico, collectively operate 120 kilns with a mean age of 36 years, but the facilities are not homogenous. About two-thirds of capacity is provided by larger, more modern kilns (with ~0.75–1.5 MTPA of clinker output), while the remaining third is from smaller, older kilns (Figure 2.2). \(^{xxi}\) This pattern reflects a decades-long trend of consolidating production in fewer, larger facilities. \(^{xxii}\) The last major wave of investment occurred from 2000–09 when 31 kilns representing ~41 MTPA of capacity were built or substantially overhauled (Figure 2.3), but the industry continues to invest in modernizing and expanding existing plants, as well as building new ones. \(^{xxiv, xxv}\)

Figure 2.2: Current kiln footprint

Active cement kilns by capacity and age

Largest 10 kilns account for 22% of capacity — all built after 2000 with >1.6 MTPA capacity each

44% of capacity is in 38 kilns with ~0.9–1.5 MTPA of capacity and average age ~26 years old

Remaining ~34% of capacity is in ‘long tail’ of smaller, older kilns (0.1–0.8 MTPA capacity, avg. ~44 years old)

Source: PCA survey data (2023)

Figure 2.2. Current kiln footprint. X-axis shows each active cement kiln by capacity (in terms of clinker production) and age. 22% of capacity is concentrated in the largest 10 kilns, all built after 2000. Another 44% of capacity is in slightly older midsized kilns. The remaining 34% of capacity is in a ‘long tail’ of smaller, older kilns. Source: Portland Cement Association (2019, Dec. 31). U.S. Portland Cement Industry: Plant Information Summary.
Figure 2.3: Historical investment cycle for cement plants

![Historical investment cycle: when kilns were built or last modernized](chart)

Figure 2.3. Historical investment cycle for cement plants. Number of kilns and capacity by period of construction or most recent modernization. The most recent surge in investment came in 2000–09 when 31 kilns representing ~41 MTPA of clinker-production capacity were built or modernized. Source: Portland Cement Association (2019, Dec. 31). U.S. Portland Cement Industry: Plant Information Summary.

Section 2.b: Technology landscape

Because emissions intrinsic to the production process or associated with high industrial heat drive ~85% of emissions, decarbonizing cement production will require innovative and sector-specific approaches, potentially including fundamental changes to the production process. A wide range of potential approaches are emerging, but they are at different stages of technological and adoption readiness (Figure 2.4).
Figure 2.4: Overview of representative approaches to cement decarbonization

<table>
<thead>
<tr>
<th>Emissions source</th>
<th>Potential approaches</th>
<th>Cost, $/t CO2</th>
<th>Cost, $/t cement</th>
<th>Unconstrained abatement potential (% to BAU)</th>
<th>ARL</th>
<th>TRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-cutting</td>
<td>Energy efficiency^1</td>
<td>(35-40)</td>
<td>(0-5)</td>
<td>Up to 20%</td>
<td>5-9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Portland limestone cement^2</td>
<td>(75-80)</td>
<td>(5-10)</td>
<td>6.19%</td>
<td>7</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>Fly ash blended cement^3</td>
<td>(25-30)</td>
<td>(5-10)</td>
<td>30-50%</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Steel slag blended cement^2</td>
<td>(15-20)</td>
<td>(5-10)</td>
<td>30-50%</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Natural pozzolans blended cement^2</td>
<td>(70-75)</td>
<td>(15-23)</td>
<td>30-50%</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>LC3 (Limestone Calcined Clay) blend^4</td>
<td>(60-70)</td>
<td>(15-25)</td>
<td>30-50%</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Heat</td>
<td>Alternative fuels</td>
<td>30-35</td>
<td>0-5</td>
<td>1-8%</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Waste fuel^5</td>
<td>(0-10)</td>
<td>(0-5)</td>
<td>1-4%</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Precaliner & Min electification</td>
<td>Emerging technologies</td>
<td></td>
<td>Up to 38%</td>
<td>1</td>
<td>5.6</td>
</tr>
<tr>
<td>Process</td>
<td>CCUS (with 45Q)^6</td>
<td>35-75</td>
<td>25-55</td>
<td>85-99%</td>
<td>1</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>Alternative production methods</td>
<td>Emerging technologies</td>
<td></td>
<td>25-100%</td>
<td>1</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>Alternative binder chemistries</td>
<td>Emerging technologies</td>
<td></td>
<td>25-100%</td>
<td>1</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Note: Approaches above are focused on primary production of cement. Additional approaches are available in downstream production of concrete (e.g., reduced cement consumption in concrete mixes, carbon curing of precast concrete products).

Figure 2.4. Overview of representative approaches to cement decarbonization. Not exhaustive—intended to illustrate the emerging mix of technologies and approaches. Not reflective of any individual company or proprietary technology. Approach have different cost implications and are at different TRLs and ARLs. Energy efficiency, clinker substitution, and alternative fuel (waste and biomass) approaches are broadly at a high ARL and TRL today, with neutral to favorable economics and the potential to abate ~30–40% of emissions cumulatively (though all three areas also have opportunities for further R&D investment, including more novel substitute materials, expanded use of alternative fuels, and more dramatic efficiency measures). Getting to 100% abatement will require technologies at lower ARL and TRL and with more challenging economics like CCUS, alternative production methods, and alternative chemistries.

Notes: 1. A range of efficiency measures are available, but they are at different ARL and TRL today. Costs are estimated for measures that are deployable today, with more limited abatement potential. | 2. Clinker substitution economics estimated using blended cement composition ratios provided in Appendix A. | 3. Fuel abatement potential and economics estimated using fuel mixes and feedstock cost benchmarks provided in Appendix A. | 4. CCUS costs estimated using methodology discussed in Appendix B. Costs reported here are for CCS specifically and include $85/tonne 45Q tax credit. | 5. Unconstrained abatement potential is for a given tonne of cement produced, not estimated for the entire cement sector. It is estimated for each approach in isolation (i.e., not tied to a specific decarbonization pathway or sequence of approaches). | 6. ARL and TRL figures are representative estimates based on DOE and expert input. They do not reflect an assessment of any specific individual company or proprietary technology and should not be interpreted as such. For electrification, high end of range reflects potential for precalciner electrification, which is less technically challenging than kiln electrification because of the lower temperatures required.

The decarbonization approaches discussed in this report tie to the DOE’s Industrial Decarbonization Roadmap pillars and prior Liftoff reports. Energy efficiency, industrial electrification, and carbon management have separate pillars in the Roadmap, although the Roadmap includes clinker substitution under energy efficiency. Alternative fuels, hydrogen, and several alternative production methods are counted in the Low Carbon Fuels, Feedstocks, and Energy Sources pillar.

Approaches can be broken out at a high level by emissions source.

Section 2.b.i: Cross-cutting measures

A set of cross-cutting measures can reduce overall emissions by reducing consumption of emissions-intensive clinker in cement mixes (“clinker substitution”) and improving the efficiency of the production process.

Clinker substitution reduces the emissions associated with a given volume of cement by replacing part of the clinker in the cement mix with materials with lower embodied carbon. Clinker substitution measures are broadly at high TRLs and high ARLs today, with favorable economics: 12

12 Detailed assumptions of cost analysis are provided in Appendix A.
Traditional substitutes (e.g., ground limestone, fly ash, steel slag) are already commercially used, albeit at a limited but growing scale.

Emerging substitutes (e.g., calcined clays, natural pozzolans) have demonstrated technical viability but are still deployed at a limited scale.

More novel substitutes (e.g., engineered SCMs) are promising longer-term technologies but are in different states of readiness and will require continued R&D investment.

Different proportions of the clinker in a cement mix can be substituted with various materials to produce different lower-carbon blends. Cement blends currently in widespread use, like Portland Limestone Cements (PLCs), substitute up to 10–15% of clinker with materials such as ground limestone, driving 5–10% emissions reductions. More ambitious approaches, like ternary blends and calcined clay cements (e.g., Limestone Calcined Clay Cement, “LC3”), allow for substitution of ~30–50% of clinker in a cement mix by weight, driving emissions reductions of ~30–50%. Blends with steeper clinker substitution are technically proven and have strong economics but remain in limited use today. Potential for scale-up of clinker substitution is discussed in greater detail in Section 3.a.

This report focuses on the primary production of cement, but the industry can further cut emissions by reducing material consumption downstream in the value chain. By reducing cement content in concrete and concrete use in construction, the broader construction sector can further reduce overall clinker consumption, compounding the decarbonization effects of clinker substitution in cement.

Efficiency measures at the cement plant offer additional opportunities to reduce emissions by reducing energy consumption throughout production. A range of high-TRL and economically favorable efficiency measures are available. Modeling for this report considers 24 potential measures that could be adopted by a representative plant with neutral to positive economics, including process control, more efficient internal transport systems, high-efficiency coolers and grinders, and high-efficiency motors and fans (the full list is provided in the appendix). Other efficiency measures are at lower TRL and ARL and are farther from deployment readiness.

Section 2.b.ii: Heat measures

For heat-related emissions, alternative fuels like wastes and biomass are technologically and commercially mature today, while clean hydrogen, electrification, and other industrial heating alternatives remain further from deployment readiness:

- **Waste fuels and biomass** are technologically mature (some wastes like tires are already used as fuel for kilns today) and can generally be deployed without significant cost impact (potentially around -$1 to $1 of impact per tonne of cement in the absence of policy or other market incentives), but abatement potential is limited and deployment comes with supply and environmental constraints (discussed in Section 3.a).

- **Precalceriner and kiln electrification** remain technologically nascent and have uncertain but likely challenging economics because of their high energy requirement and associated costs, particularly for high-heat applications like cement kilns. Precalceriner electrification could be closer to viability because of the lower heat required.

- **Clean hydrogen** is more challenging economically and is not currently on track to see significant uptake in the near term given available alternatives. Clean hydrogen can likely be used as up to ~5-20% of the fuel mix without a significant overhaul of plant infrastructure, but securing clean hydrogen at sufficiently low cost to compete with existing fuels is likely to be challenging. Even with subsidized production from the 45V tax credit, clean hydrogen may be prohibitively expensive for most cement producers.

13 Detailed assumptions of cost analysis are provided in Appendix A.
plants, especially if significant investment in transportation and storage infrastructure is required. The available supply of clean hydrogen may also go first to sectors with higher willingness to pay, such as heavy-duty transportation.xiii Using hydrogen at higher rates in the fuel mix (e.g., up to 100%, consistent with complete decarbonization of kiln heat) will likely require more fundamental reconfiguration of existing plants or greenfield plant construction, with substantial associated CAPEX and opportunity cost from downtime.14, 15, xxxiii

\section*{Alternative industrial heating techniques}

Like thermal energy storage could also have applications for cement (discussed in detail in the Pathway to Commercial Liftoff: Industrial Decarbonization report), but these techniques similarly remain at early stages of technological and economic maturity.xxiv, xi See the Industrial Decarbonization report for a more detailed economics discussion.

\section*{Section 2.b.iii: Process measures}

There are limited options to address emissions from calcination, and they are typically at lower levels of technological maturity and adoption readiness.16

\section*{Alternative production methods}

For traditional cement products (e.g., alternative noncarbonate feedstocks, electrochemical production methods, and other alternatives to traditional rotary kiln plants) remain at the pre-commercial pilot or pre-pilot stage, and deployment economics and market accessibility remain unclear.xii Their potential pathway to commercial-scale deployment is considered in Section 3.c.

\section*{Alternative binder chemistries}

Shift away from traditional Portland-type cement clinker entirely. Alternative chemistries include belite, sulphoaluminate, and “MOMS” (magnesium oxide derived from magnesium silicates) clinkers and other engineered materials. Some materials are commercially available today at a small scale, but many remain far from technological maturity and are generally far from broad market adoption.xiii Their potential pathway to commercial-scale deployment is considered in Section 3D.

\section*{Carbon capture, utilization, and sequestration (CCUS)}

May be employed to address emissions that cannot otherwise be cost-effectively abated from process (and potentially heat).17 There are multiple potential approaches to carbon capture for cement plants. Post-combustion amine-solvent capture technology is at higher TRL today. However, the low CO\textsubscript{2} concentration in post-combustion streams results in high CAPEX and OPEX that, when combined with the cost of CO\textsubscript{2} transportation and storage infrastructure, drive extremely high costs (potentially $35–75 per tonne of CO\textsubscript{2} including the 45Q tax credit, $120–160 per tonne without it).18 Emerging technologies (e.g., capture with oxyfuel combustion, calcium looping, methods for capturing just the purer stream of process emissions) could have significant technical and economic advantages in the longer term but are at much lower TRLs today.xiii, xiv, xvi, xlix

\begin{itemize}
 \item 15 Use of clean hydrogen may come with public and energy and environmental justice concerns that projects will have to address. Because hydrogen is currently positioned to play a more limited role in decarbonization of cement, justice implications of hydrogen projects are not considered extensively in this report, but detailed discussion can be found in the Pathway to Commercial Liftoff: Industrial Decarbonization and Pathway to Commercial Liftoff: Chemicals & refining reports.
 \item 16 Detailed assumptions of cost analysis are provided in Appendix A.
 \item 17 This report typically refers to “Carbon Capture, Utilization, and Sequestration” (CCUS) because of the significant potential for carbon capture approaches in cement and construction materials. Where only sequestration is considered, “CCS” is used. Where only utilization is considered, “CCU” is used.
 \item 18 Cost estimates are based on NETL 2023 modeling for 95% capture at a preheater/precaliner kiln fueled with coal and coke, using CANSOLV amine-based post-combustion system. Capital costs are adjusted to reflect a 12-year payback period, consistent with what investors have said they would be willing to underwrite, using capital recovery factors from the Energy Futures Initiative. Transportation and storage costs of $10–40 per tonne of CO\textsubscript{2} are assumed, consistent with the representative figures in the Carbon Management Liftoff report. The specific methodology is provided in Appendix B. Hughes, Sydney, and Patricia Cvetic. (2023, Mar.). Analysis of Carbon Capture Retrofits for Cement Plants. NETL. \url{https://www.netl.doe.gov/energy-efficiency/industry-opportunities/carbon-capture/analysis-of-carbon-capture-retrofits-for-cement-plants/}. Brown, Jeffrey D., et al. (2023, Feb.). Turning CCS projects in heavy industry and power into blue-chip financial investments. Energy Futures Initiative. \url{https://energyfuturesinitiative.org/cci_report/}. \end{itemize}
Section 2.b.iv: Future technology landscape

To capitalize on opportunities for short and medium-term emissions reductions, it will be critical to improve the adoption readiness of the large number of technologies at high TRL but low ARL, especially the next generation of clinker-substitution and fuel-switching measures. But these measures will not be enough. Roughly 30-40% of emissions are addressable through currently deployable technologies, but full decarbonization of the sector will hinge on rapidly getting nascent technologies to technological maturity and bringing them into the market at scale.

Section 2.c: Market context: Structure, economics, and implications for deployment

The market context shapes the potential for deployment and eventual Liftoff of low-carbon cement technologies. The cement market has unique structural and economic attributes that create opportunities for and constraints on deployment.

Figure 2.5: Value chain map – cement, concrete, and construction

Cement production in the construction value chain

- **Steps occurring at cement plant**
 - Raw material extraction and quarrying
 - Clinker manufacturing
 - Cement production
 - Cement retail

Concrete production

- Ready-mix concrete companies
- Precast companies
- Clinker and cement production

Construction

- Small sub-contractors
- Contractors

End uses

- Roads & highways
- Bridges
- Infrastructure maintenance
- Public Buildings
- Private Buildings
- Other

Vertical Integration

- Wholesalers
- Big box retailers
- Government procurement

Description

- Limestone, clays, and other input materials are quarried and crushed
- Crushed material is milled and dried, then heated at high temperature in rotary kiln to produce clinker
- Clinker is ground together with additives (e.g., limestone, gypsum, SCMs) to produce cement
- Cement is mixed with water and aggregates to form concrete, either ready-mix onsite or pre-cast
- Concrete is used onsite in construction projects

Figure 2.5. Overview of the cement-concrete-construction value chain. Cement production is upstream in the broader value chain. Government procurement accounts for roughly half of the end market for cement, but there are multiple layers of intermediaries (e.g., ready-mix companies, subcontractors, and construction contractors) between primary production and end uses. | 1. The share of shipped cement is estimated based on data from the Portland Cement Association’s Survey of Portland Cement Consumption by User Group (2022). | 2. End-use share is estimated based on an analysis of data from the Portland Cement Association’s U.S. Cement Industry Annual Yearbook (2022) by Breakthrough Energy Ventures.
Section 2.c.i: Cement market structure

Cement production is upstream in the broader construction value chain and represents a relatively small value pool within the construction industry. Total U.S. spending on cement was estimated at ~$14.6B in 2022, representing <1% of the ~$1.8T in total U.S. spending on construction, with cement being a typically small contributor to overall project costs (although this can vary based on project type). xlviii, xlix

The value chain is consolidated at either end but fragmented in the intermediate tiers. A few suppliers account for most production, and large buyers like government agencies for more than half of the demand, but between them are multiple layers of intermediaries:

Supply side. Production is increasingly consolidated in a small number of large companies, typically multinationals. Twenty-four companies own all 96 active U.S. cement plants (excluding capacity in Puerto Rico), and the top 10 companies account for over 80% of installed production capacity.

Demand side. Government procurement drives ~50% or more of U.S. cement consumption, giving the public sector an outsized role in shaping the market. li Approximately 30% of total consumption—and two-thirds of government consumption—comes from roads, highways, bridges, and other infrastructure maintenance, with federal and state departments of transportation (DOTs) leading in setting requirements and allocating funding. li The remaining third of government procurement is largely driven by water and wastewater infrastructure, utilities, and public buildings. The rest of the market is largely accounted for by private procurement for building construction (i.e., residential, commercial, and agricultural).

Intermediaries. There are multiple tiers of intermediaries in the value chain between primary production and end consumption, often with significant fragmentation. Approximately 96% of all cement shipped goes through intermediaries (e.g., ready-mix concrete companies, concrete product manufacturers, contractors, and materials dealers) and there are typically multiple layers of ready-mix suppliers, subcontractors, and contractors between a cement plant and the end customer paying for a building or highway construction project. lii These intermediate tiers are often fragmented. For example, there are thousands of individual ready-mix concrete companies, which are often small businesses.

Section 2.c.ii: Product segmentation

Consumption of cement fits overwhelmingly into one of two concrete product segments, each with distinct attributes and requirements:

Ready-mix accounts for the largest share of the market but is a difficult segment for new materials to enter. Approximately 70–75% of cement is used to make ready-mix concrete, which can be prepared onsite and used in various applications, including road paving and building construction. lv The ready-mix market has high barriers to entry, including more stringent product standards for structural applications like building construction. Additionally, because ready-mix concrete is prepared onsite in various environments and conditions, it is a challenging segment to break into for new cement products that may require tighter control of the concrete production process. However, because ready-mix accounts for such a large share of the market, deep decarbonization of the sector will require low-carbon technologies compatible with ready-mix applications.

Pre-cast is a smaller share of the overall market but can offer an initial foothold for new players. Approximately 10–15% of cement is used in pre-cast applications where concrete is mixed,
cast in a mold, and “cured” in a controlled environment before installation at a construction site. Pre-cast products offer concrete suppliers more control over the production process and can be more amenable to new products, often providing an initial market niche.

The remaining ~10–20% of cement consumption is accounted for by bagged cement and specialty products.

Section 2.c.iii: Baseline economics

The baseline economics of cement production define the shape of the market. Four key factors are particularly important:

- **High CAPEX and limited financing options for projects.** A new U.S. cement plant at 1+ MTPA scale can require $0.5–1.0B in CAPEX. Major investments are typically financed on the balance sheet, either from existing assets and cash flow or by using traditional corporate finance: cement companies can have a high cost of capital due to their smaller size and the perceived risk of a merchant business model. There is limited use of project finance for cement in the U.S. today; in conversations with numerous investors and large cement companies, no recent instance could be identified in which a project finance model was used. Moreover, large investment firms often have limited experience with cement projects and may not have analysts focused on cement companies, given their limited market capitalization.

- **Long asset lives.** Facilities are expected to have asset lives of ~30–50+ years, with high CAPEX amortized over this extended period. In the current industrial base, 48 operational kilns were built before 1980; the oldest was built in 1928. Early retirement of plants represents a significant cost to cement companies.

- **High opportunity cost of downtime.** Similarly, plants are expected to operate with minimal downtime. They are taken offline for short periods on a roughly annual basis to be relined, but major overhauls are typically done on a decadal or multi-decadal timeline to minimize opportunity cost. Based on public data, one year of downtime at a representative 1-1.5 MTPA capacity cement plant could represent ~$100–200M of opportunity cost. Interventions (e.g., retrofits with new technologies) that come with significant plant downtime will thus incur substantial additional costs.

- **OPEX driven by fuel and freight costs.** Production is optimized to minimize fuel costs, and any intervention that increases the cost of fuel is likely to have an outsized impact on overall production cost and margin. Both input materials and the finished product are also heavy and expensive to transport by land, and interventions that require longer-distance shipping of materials can quickly and significantly impact cost and margin.

Section 2.c.iv: Market attributes and implications for deployment

Four market attributes, shaped by the underlying economic dynamics of the sector, define the deployment model and viable business models for new technologies:

- **Regional fragmentation.** Because of high freight costs, the cement market is regionally fragmented. Cement is heavy. Freight cost typically makes it prohibitively expensive to ship cement far, and U.S. plants have limited access to lower-cost rail or waterborne transportation—71% of cement is shipped...
from the plant gate by truck, 19% by rail, and 10% by barge and boat. Plants are built close to customers and serve a local market, with their ability to realize economies of scale capped by the size of that serviceable demand pool. Decarbonization solutions must accordingly be tailorable to the unique conditions at each plant site.

- **Lack of long-term offtake agreements.** Cement procurement is typically a “handshake business” without long-term offtake. The ready-mix companies and contractors that are typically the immediate customers for cement producers buy on an as-needed basis for their construction jobs. Customers are reluctant to commit to longer-term offtake because of uncertainty about long-term demand amidst boom-and-bust construction market cycles. This model leaves cement plants with significant merchant risk and complicates efforts to create a credible long-term demand signal for the scale-up of new technologies.

- **Rigid industry standards and specifications tightly govern the deployment of cement and concrete.** An end user like a developer or construction company will set requirements for performance (e.g., consistency, strength, air content) and exposure conditions (e.g., proximity to water, exposure to chemicals), dictating the composition of the concrete mix and the type of cement that must be used. Industry associations like the American Society for Testing and Materials (ASTM) and the American Association of State Highway and Transportation Officials (AASHTO, focused specifically on roads and highways) provide voluntary standards almost universally adhered to regarding defined cement types and compositions. These standards can either be prescriptive, detailing the specific composition of a cement blend, or performance-based, which require materials to meet certain performance benchmarks while offering more flexibility concerning precise composition. Large, high-profile customers like state DOTs play a major role in setting norms for an entire market and may do their own testing of materials. Specifications set by state DOTs are often taken as the authoritative model for other customers. To enter the market at scale, cement products must be compatible with standards and usually accepted by trusted authorities.

- **Risk-averse customers.** Customers are risk-averse and generally have a long adoption cycle for new approaches and products. Customers like ready-mix companies, contractors, and engineers are highly sensitive to the potential risks of adopting new technologies, which can range from cost/schedule overruns to life-safety risks. Particularly for structural use cases (e.g., construction of high-rise buildings, bridges, and other critical infrastructure), preventing performance issues is of paramount importance for cement and concrete users along the entire value chain (discussed in additional detail in Chapter 4).

Section 2.d: U.S. industry momentum

Over the last two decades, the U.S. has reduced the emissions intensity of cement, but further reductions are required to hit climate and decarbonization targets. Since 1995, the U.S. cement industry has reduced its emissions intensity per tonne of cement by ~10%, mostly by finding efficiencies in production and phasing in natural gas instead of coal and coke. As of 2020, 92% of U.S. plants, accounting for 98% of production, were using the less energy-intensive dry kiln production method. About 73% of U.S. cement plants currently use some share of alternative fuels: the share of energy consumption accounted for by alternative fuels increased from 2% in 1996 to 16% in 2019. Since 1996, the share of thermal energy from coal and coke has fallen from 74% to 59%, while the share of natural gas has increased from 7% to 25%. More recently, the industry has phased in using Portland Limestone Cement (PLC), a blended cement that substitutes ground limestone for up to 15% of the mix to reduce clinker factor, typically yielding ~8% reduction in emissions intensity (see the following case study). However, the U.S. cement industry still has significant progress to make to reach net-zero targets.

23 ~97% of cement is shipped the ‘last mile’ to customers by truck. The phenomenon comes from cement that is shipped first by rail or water from the plant to a central terminal, then transported by truck to customers.
Today, the U.S. lags behind Europe and other parts of the world in adopting low-carbon approaches. The EU uses alternative fuels for ~50% of primary energy consumption in cement, compared to just ~15% in the U.S. This higher share is enabled in large part by the comparatively high cost to landfill waste in the EU, which creates a strong economic case for the use of waste-based fuels.

The first commercial-scale demonstrations of deep decarbonization technologies are also largely happening outside of the U.S. Heidelberg Materials has broken ground on the first commercial-scale cement-carbon-capture facility at their Brevik plant in Norway and plans to begin operations by 2024. As of 2022, GCCA has identified more than 30 other projects worldwide, most concentrated in Europe. Construction of the first commercial-scale cement CCUS deployment in North America is underway at Heidelberg’s plant in Edmonton, Alberta, Canada. Government support has been critical for project viability so far. For example, the Edmonton project has moved forward with significant support from the Canadian government, including direct financial support and carbon pricing.

Though initial momentum has built overseas, interest in U.S. deployments is growing quickly post-IRA, and the U.S. could recapture global leadership with bold action.

Established cement companies are exploring the feasibility of deploying new technologies, including CCUS, at existing plants and more aggressive clinker substitution approaches like calcined clay cements. Clean Air Task Force counts five U.S.-based CCUS projects in the cement sector, all in early stages. These projects include (1) a partnership between Holcim, Svante, Occidental, and Total Energies to explore the feasibility of carbon capture and sequestration at Holcim’s Florence, CO plant, (2) DOE-funded feasibility and FEED studies for deployments at Holcim’s Ste. Genevieve plant in Bloomsdale, MO, (3) CEMEX’s Balcones, LA, plant (4) Heidelberg’s new Mitchell, IN plant, and (5) a partnership between Heidelberg and the start-up Fortera to produce a supplementary cementitious material using captured CO2 from Heidelberg’s Shasta, CA, cement plant.

Beyond incumbents, a robust startup ecosystem of 40+ new companies has developed to bring new production methods and novel products to market along the entire value chain.

Case study: Portland Limestone Cement (PLC) rollout – A model for adoption of low-carbon cement blends

The large-scale adoption of Portland Limestone Cements (PLCs) has been one of the most significant early steps toward cement decarbonization in the U.S. PLC blends replace up to 15% (typically ~10–11%) of clinker content with ground, uncalcined limestone and can achieve an ~8% average reduction in emissions compared to traditional Portland cement. PLCs were approved under the widely used ASTM C595 standard in 2012 and today account for roughly one-third of cement shipped in the U.S.
The PLC rollout provides valuable lessons for how other decarbonization approaches, particularly more aggressive clinker substitution in blended cements, could get to scale this decade:

- **Without intervention, the industry can have a 10+ year adoption cycle even for blends with well-established track records and a strong economic case—a timeline incompatible with rapid deployment.** Clinker substitution with ground limestone had a long track record and a strong value proposition. Cements with limestone content have been used in Europe and other countries since the 1960s, and blending limestone into Portland cement has been allowed under Canadian standards since 1983. In the U.S., up to 5% limestone has been used in Portland cements under ASTM C150 and AASHTO M85 since 2004 and 2007, respectively. Because uncalcined limestone can be as much as ~$60 (~90%) cheaper per tonne than clinker, PLC blends also have a strong economic case, potentially enabling ~$5–10 of additional value capture per tonne of cement compared to OPC.

- **As trusted first movers, state DOTs play a critical role in unlocking adoption by the wider market, but it can take ~5–10 years to reach a critical mass for adopting new materials.** Although ~5–10 first-mover states adopted PLCs within 1–2 years of initial acceptance under ASTM C595 in 2012, it took ~5 years for half and ~10 years for all 50 state DOTs to accept PLCs in their specifications.

- **Once tipping points are hit, however, market share can grow rapidly, potentially doubling year-over-year.** Even after most state DOTs had adopted PLCs, market share remained relatively stable at ~2–3% until 2021, when it began to grow rapidly, reaching ~35% of the market by 2023 (CAGR of 127% from 2020–23).

The PLC rollout shows that rapid adoption of new lower-carbon cement blends is possible, but key barriers must be overcome to scale more aggressive clinker substitution methods (discussed in detail in Chapter 4).

24 Based on blended cement share of total shipped volume reported by the U.S. Geological Survey. USGS defines blended cements as products brought to market under ASTM C595, which will include PLC in addition to Portland-pozzolan and Portland blast-furnace slag cements.
Chapter 3: Pathway to commercial Liftoff

Key takeaways

1. **Technologies could follow four distinct ‘tracks’ to commercial Liftoff** (outlined in Section 3.a.i below). In the short term, currently deployable measures could abate ~30% of emissions while delivering $1B+ in savings for industry by the early 2030s. In the longer term, achieving net zero by 2050 will require scaling technologies at lower TRL/ARL and with more challenging economics (CCUS, alternative production methods, and alternative binder chemistries).

2. **Demand for low-carbon products will be the engine for Liftoff for all technologies.** Government procurement (state and federal) can play a decisive role in creating a strong demand signal for low-carbon cement.

3. **The U.S. is positioned to lead internationally on decarbonizing cement production.** The U.S. can pioneer key technologies domestically, particularly low-cost CCUS and alternative production methods, then export them abroad to accelerate decarbonization of the ~7-8% of global CO$_2$ emissions driven by cement.

4. **Scale-up will have to account thoughtfully for broader community impacts.** Scaling low-carbon cement technologies comes with powerful opportunities to benefit the economies, environmental quality, and health of fence-line communities, but some risks and concerns will also need to be addressed.
The pathways to commercial Liftoff for different low-carbon cement technologies will be shaped by their technology readiness, fundamental economics, and adoption cycles within the industry. This section identifies four parallel ‘tracks’ different technologies could follow to widespread commercial deployment and scale, all of which hinge on establishing a clear demand signal from end customers to cement producers:

A. Currently deployable measures—clinker substitution, efficiency measures, and alternative fuels—are compatible with existing standards, technologically ready, have a strong economic value proposition, and could achieve widespread adoption by the early 2030s. Aggressive deployment could...
drive ~30% emissions reduction by the early 2030s and ~40% by 2050.25

B. **CCUS** retrofits of existing plants and integration into new-build plants can scale from the 2030s, following initial demonstrations in the mid/late 2020s and supported by coordinated procurement, policy support, and cost reductions as deployments ramp.

C. **Alternative production methods** for traditional cement products can scale in the 2030s through greenfield plant deployments if they are demonstrated successfully and meet key performance and cost milestones in the late 2020s, with policy and demand support.

D. **Breakthrough alternative binder chemistries** can gain early footholds in niche, lower-risk applications, while passing through a longer-term adoption cycle to achieve full scale-up in the 2040s, with some potential to pull forward the timeline through broader adoption of performance-based standards.

Other emerging technologies are farther from commercialization and offer high-impact opportunities for applied R&D. These include transformative approaches like high-hydrogen fuel blends and kiln electrification, earlier-stage novel SCMs and binders and alternative approaches to carbon capture and utilization.

Section 3.a.ii: Demand as the engine for Liftoff

Establishing a strong demand signal out of coordinated procurement will be the first step for getting technologies to commercial Liftoff across all tracks. Credible demand for low-carbon cement products will incentivize companies to pursue decarbonization at the aggressive pace required to meet net-zero goals, unlock the business case for more expensive interventions, and allow capital-intensive projects to attract the investment they need. Coordinated procurement will need three components to shape the market effectively:

- **Procurement requirements for low-carbon products.** Large-scale buyers—particularly government agencies and the largest private-sector customers—are beginning to commit to procuring low-carbon materials at scale, and they can adopt requirements for their own purchases of these low-carbon materials (i.e., concretes using low-carbon cements) that are sufficiently aggressive to require suppliers to invest in new approaches. DOE’s Industrial Decarbonization Roadmap projects that the U.S. cement industry could need to achieve a ~10% reduction in emissions by 2030, ~35% by 2035, and ~60% by 2040 to remain on track for net zero, and standards for low-carbon procurement could be correspondingly aggressive. Such requirements would also need to account for material performance to meet engineering requirements and to capture a material’s full life cycle emissions impact.

 The federal government has already begun to set some requirements to these effects. EPA’s Interim Determination for federal cement and concrete procurement requires materials purchased under IRA Sections 60503 and 60506 by GSA and DOT to be in the top 20% of the market based on emissions reduction, with adjustable requirements if materials are not available. GSA’s low-carbon procurement pilot program sets specific emissions thresholds for cements and concretes.

- **Clear, credible quantification of embodied carbon.** Market actors in the public and private sectors can develop a shared set of credible metrics and standards for embodied carbon in cement and downstream products, supported by robust measurement and verification systems, data-sharing, and documentation (i.e., through standardized and widely available EPDs) to ensure purchased cement and concrete products meet low-carbon procurement standards (related challenges and potential solutions are considered in detail in Chapter 4). EPA is currently leading an effort and providing grant funding to support improved market data for measurement, calculation, and verification of embodied carbon in materials, and future efforts can build on this foundation.26

25 Based on modeling detailed in Appendix A.
Demand signal that reaches cement plants. Large-scale buyers must develop ways to pass the demand signal for low-carbon cement through multiple layers of intermediaries in the value chain to cement plants. This could require more active management of construction supply chains and potentially using innovative contracting structures that allow for direct agreements between end customers and cement plants (related challenges and potential solutions are considered in detail in Chapter 4).

With their commanding share of the market and clear means of coordination, federal and state governments can play a particularly powerful role in implementing such a model.

To succeed in driving deep decarbonization, a coordinated procurement model must evolve to incentivize and economically enable ever-steeper reductions in embodied carbon. Initial investments to develop embodied carbon standards, the necessary data ecosystem and assessment methodologies, and deep supply-chain visibility will provide foundational capabilities for a long-term procurement regime. Longer term, large-scale buyers must raise standards for decarbonization and add new capabilities to support the deployment of technologies with more complex demand-side requirements.

The rest of this section considers how demand for low-carbon materials can pull technologies along each of the four tracks to Liftoff.

Section 3.a.iii: Commercial Liftoff by track

Track A: Currently deployable measures: Clinker substitution, efficiency measures, and alternative fuels

Key takeaways

- Clinker substitution, efficiency measures, and alternative fuels are deployable today and could allow the industry to save ~$1B+ per year while abating ~30% of sector emissions by the early 2030s and ~40% by 2050. Clinker substitution is the most powerful short-term lever, potentially abating ~25% of emissions and driving ~$5–20 of savings per tonne of cement.

- Credible demand from large end customers, particularly requirements for low-carbon materials in project specifications, is needed to accelerate Liftoff by incentivizing intermediaries in the value chain to use low-carbon cements and providing cement companies with the assurance that customers will buy low-carbon blends.

Clinker substitutes, efficiency measures, and alternative fuels are technologically proven, compliant with existing standards, and have strong economics today. Deployed aggressively, they could collectively abate ~30% of cement sector emissions and allow cement producers to capture an additional $1B+ of value per year by the early 2030s. With expanded deployment, they could abate ~40% of emissions by 2050. Each is considered in more detail below.
Clinker substitution

Clinker substitution has a strong positive economic case and will be the industry’s most powerful abatement lever through the early 2030s. Deploying blended cements that are compliant with existing standards could yield an additional ~$1B of value per year industry-wide while abating ~20–25% of sector emissions by 2030.

Figure 3.2: Clinker substitutes – key attributes and economics

<table>
<thead>
<tr>
<th>Substitute material</th>
<th>Est. cost, $/tonne</th>
<th>Substitution range, %</th>
<th>Availability/operational considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinker</td>
<td></td>
<td>69 N/A</td>
<td>• N/a</td>
</tr>
<tr>
<td>Limestone</td>
<td>7</td>
<td>5-15%</td>
<td>• Readily available (existing feedstock, typically onsite)</td>
</tr>
<tr>
<td>Fly ash</td>
<td>42</td>
<td>30-35%</td>
<td>• ~26.4MT of fly ash produced in the US in 2021, but decline expected as coal plants are decommissioned</td>
</tr>
<tr>
<td>Ground Granulated Blast Furnace Slag</td>
<td>55</td>
<td>45-95%</td>
<td>• ~2.8MT of granulated BFS for sale in the US in 2022; expected future decline in availability as BF-BOF steel production plateaus/declines</td>
</tr>
<tr>
<td>Natural pozzolans</td>
<td>11</td>
<td>30-40%</td>
<td>• Available in dry or volcanic regions (e.g., Western US) – exports currently minimal</td>
</tr>
<tr>
<td>Calcined clay</td>
<td>31</td>
<td>30-40%</td>
<td>• Typical raw material for a cement plant, however, smaller share compared to limestone. Expansion of existing clay quarries likely needed</td>
</tr>
</tbody>
</table>

Figure 3.2: Overview of representative clinker substitutes with key attributes and economics. Clinker is energy-intensive and expensive to manufacture. Substitutes can be significantly cheaper per tonne, and substitution can thus drive significant reductions in cost. Materials can be substituted for ~5–15% of the mix by weight for limestone to up to 95% for slag. ~30–40% is more typical/feasible for most SCMs. Additional availability and operational considerations apply: fly ash and slag have limited supply; natural pozzolans are widely available in some regions; clays are already widely available at cement plants but may require expansion of existing quarries. Notes: 1. Cost for each substitute material is estimated on a per tonne basis using assumptions detailed in Appendix A. Clinker cost per tonne was estimated outside-in using representative fuel, energy, and material costs. 2. High end of substitution range is given by ASTM C595. Increasing substitution past a certain level can change the viable end applications for a cement mix, such that the high end is not attainable in all use cases. Low end of substitution range reflects more common and feasible substitution levels. 3. Most substitute materials are cheaper than clinker, making substitution favorably economically. Clinker can cost ~$60–70 per tonne with typical fuel and power costs, while ground limestone costs ~5–10 per tonne, although it is capped at 15% of a mix by current standards. Traditional SCMs like fly ash and steel slag cost ~$40–60 per tonne, and emerging SCMs like natural pozzolans and calcined clays could cost ~$10–35 per tonne. 4. U.S. Geological Survey (2021). Mineral Yearbook: Iron and Steel Slag. https://www.usgs.gov/centers/national-minerals-information-center/iron-and-steel-slag-statistics-and-information.

26 Detailed calculations and underlying analysis are provided in Appendix A. The aggressive deployment scenario assumes cement producers can reduce clinker factor industry-wide to ~65% by the early 2030s by scaling a mix of substitutes and deploying low-clinker cements like calcined clay cements and other ternary blends. It should be noted that this level of substitution is significantly higher than targets set in both PCAs' decarbonization roadmap (85% clinker factor by 2050) and DOE's Industrial Decarbonization Roadmap (84% by 2030, 66% by 2050). 35% substitution by the early 2030s is an ambitious target intended to reflect a high-end estimate of what industry could potentially achieve, driven by the powerful economic incentive from substantial cost savings and enabled by concerted effort (detailed in this chapter and Chapter 4).

The representative modeling exercise assumes the following shares by mass of materials in total U.S. cement production: 65% clinker, 15% limestone, 9% calcined clay, 5% gypsum, 3% fly ash, 2% natural pozzolans, <1% GGBFS, <1% other (does not sum to 100% because of rounding). Exact composition could vary. The modeling exercise makes some arbitrary assumptions informed by conversations with the industry and practical limitations on deployment (discussed in Appendix A).

27 ~25% emissions reduction for this level of deployment is roughly consistent with an RMI analysis suggesting that full-scale deployment of SCMs in the U.S. could abate ~38% of cement emissions. Esau, Rebecca, and Audrey Rempher (2022). “Low-Carbon Concrete in the Northeastern United States.” RMI. Low-Carbon Concrete in the Northeastern United States - RMI.
per tonne (Figure 3.2). Representative low-carbon blended cements could deliver ~$5–20 of savings per tonne compared to high-clinker cements currently in use (Figure 3.3). At a representative 1.5 MTPA cement plant, this would equal $10–30M in annual savings or NPV of $75–230M with a 20–year investment lifetime.

Figure 3.3: Low-carbon cement blends

<table>
<thead>
<tr>
<th>Economics of representative low-carbon cement blends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>OPC</td>
</tr>
<tr>
<td>PLC (Portland Limestone Cement)</td>
</tr>
<tr>
<td>Blended cement with fly ash</td>
</tr>
<tr>
<td>Blended cement with steel slag</td>
</tr>
<tr>
<td>LC3 (Limestone calcined clay cement)</td>
</tr>
<tr>
<td>Blended cement with natural pozzolates</td>
</tr>
</tbody>
</table>

Figure 3.3: Representative low-carbon cement blends—composition, representative economics, and emissions reduction compared to ordinary Portland cement (OPC). Blends can achieve embodied carbon reductions of ~10% for PLCs to as much as ~40% for calcined clay and steel slag-based blends. Blends can also achieve savings of ~$5–20 per tonne, equivalent to ~$10–30M per year of additional value captured at a representative 1.5 MTPA cement plant. Detailed modeling assumptions are in Appendix A.

Notes: 1. ASTM C595 range; exact ratio chosen based on most likely given industry implementation/feasibility in the U.S. from conversations with industry experts. 2. Based on a cement plant with 1.5MT of capacity per year.

While deployment costs will vary by site, the economics of clinker substitution are expected to be favorable under various circumstances. Plants must have a nearby source of substitute materials and may incur additional costs to make that source usable (e.g., investment to expand existing or develop new mines or quarries, investment in building out logistics infrastructure, and additional operating costs from transporting heavy materials). Public estimates suggest cement plants could produce calcined clay blends like LC3 with ~$15M of CAPEX investment, but conversations with industry suggest that some projects could require closer to $50–200M, with the discrepancy driven by the potential need to build new silos for material storage (at a cost of ~$50M each). 28 Yet even if significantly higher CAPEX (e.g., $50–200M for new silos, storage facilities, and quarry redevelopment) and OPEX (e.g., from long-distance transportation of materials) are assumed, modeling suggests a wide range of projects could still be economically viable. 28

The availability of raw materials constrains clinker substitution, but workarounds are available. Approximately 25 MT of fly ash and ~3 MT of steel slag suitable for cement production are available per

year as of 2021–22, theoretically just enough to replace ~30% of cement volume by weight. However, fly ash supply is expected to decline precipitously as the power sector transitions away from coal, meaning the future supply of these conventional SCMs will not be available in sufficient quantities. Indeed, these inputs are already among the more expensive SCMs. Supply shortfalls could drive further price increases and create cost and schedule risk for projects if cement cannot be supplied in time, deterring use.

Scale-up can rely on a combination of approaches: 30

- **Alternative sourcing of traditional substitutes.** Shortages of fly ash can be addressed by expanding ponded coal ash use, which is allowed under current ASTM standards. Extraction of ponded ash could be part of brownfield remediation programs for legacy coal infrastructure, though efforts must navigate environmental and health risks and the associated potential for liability. xci, xcii

- **Expanded use of emerging substitutes.** Calcined clays and natural pozzolans are widely available in many regions and can accordingly replace substitutes that are likely to be in shorter supply in the future while potentially offering even more favorable economics. xciii

Efficiency measures

Efficiency measures could also scale by the early 2030s—they offer the potential to reduce emissions by up to 5% at minimal cost to the industry. A representative mix of 24 efficiency levers, including process control, more efficient internal transport systems, and high-efficiency motors and fans, could abate ~2–5% of emissions by 2030 without increasing the cost of production and potentially driving modest savings per tonne of cement. 31

Steeper efficiency improvements will be more challenging. Because of the long lifetimes of existing plants, more radical reconfigurations of plants to improve efficiency are unlikely to be economical in many cases. xciv Interventions can involve technical tradeoffs (e.g., increasing the number of preheating stages can improve heat recovery but also increase electricity consumption) or encounter economic barriers (e.g., technologies like waste-heat recovery are commercially available but have not been adopted at scale because of their cost). xcv

Alternative fuels

Alternative fuels also have near-breach even economics and could abate ~5–10% of emissions by 2030 with aggressive deployment, but community impacts must be considered. 32 Waste-based fuels like tires, waste oils, and plastics are already widely used, and ~25% of waste tires in the U.S. may already be used in cement production. xcvi These fuels can offer modest economic advantages when burned in the kiln because of their high heat content relative to other fuels. With marginal economics at baseline, high tipping fees for waste disposal can create a strong economic incentive for using waste fuels in cement kilns and have been a key driver of the more rapid uptake of alternative fuels in Europe. Jurisdictions with high waste disposal costs will also offer favorable conditions for more rapid deployment in the U.S. xcvii, xcviii

Biomass fuels also have marginal cost implications per tonne of cement and can thus enable emissions

30 Scale-up of clinker substitutes could require expansion of quarries and mining facilities, with associated energy and environmental justice concerns. Potential EEJ implications are considered at a high level in Section 3.c, but this analysis was not scoped to assess these implications in detail.

32 Representative scenario finds potential for ~7% reduction in emissions by 2030, assuming alternative fuels share can expand to provide 35% of heat energy by 2030 on a trajectory to match the EU’s 50% share by 2050. Detailed assumptions are provided in Appendix A.
reductions at minimal cost, though the availability of cheap biomass is limited and could be a constraint on deployment. A recent study estimated that substituting biomass for 20% of coal content in kiln fuel mixes nationwide could reduce emissions by 4.3 MT CO₂ per year (~6% of annual emissions), but noted that the total U.S. supply of fruit stones and nut shells, the optimal biomass feedstocks given their high heat content, could offset just 2.7 MT CO₂ per year.⁹

Alternative fuels also come with air quality implications that need to be addressed. Combustion of tires, waste oils, and plastics has the potential to release additional air pollutants, potentially adversely affecting surrounding communities (discussed in Section 3.b). This report does not estimate the cost of additional potential pollution-control equipment for fuel conversions, but these costs could be substantial. It should also be noted that a cement kiln that burns alternative fuels may be subject to different air emissions regulations, depending on the specific alternative fuels burned. As a result, the cost implications of thoughtful environmental stewardship may sometimes limit the uptake of alternative fuels.

Collectively, scaling clinker substitution, efficiency measures, and alternative fuels in line with an aggressive decarbonization pathway could require $25–60M of investment per plant—~$3–6B of total investment by the early 2030s.¹⁰

Liftoff for clinker substitution, efficiency measures, and alternative fuels

With clear demand from coordinated procurement, these currently deployable measures could rapidly achieve Liftoff. Large-scale buyers, particularly trusted government first movers like state DOTs, can lead with the initial adoption of lower-carbon blended cements, particularly ternary blends and blends using newer materials like calcined clays. Large buyers can incentivize uptake by ready-mix concrete suppliers and contractors by requiring low-carbon cement in project specifications and working with their lower-tier suppliers to facilitate adoption. An initial demand signal can be followed by rapid uptake in the rest of the market as customers follow the lead of first movers and cement plants convert production to lower-carbon blends, phasing out clinker-intensive products. (Key challenges and reasons why the market has not yet seen aggressive adoption are considered in Chapter 4.) If more aggressive blended cements follow the same trajectory as PLC, market share could double year-over-year once the critical tipping points are hit.

33 Analysis is based on economics for woody biomass (est. $41/ton). Detailed assumptions are in Appendix A. Other forms of biomass with higher heat content (e.g., stone fruits, nut shells) may be better suited to the fuel mix in cement kilns. Discussed in Pisciotta, Maxwell, et al. (2022, July). “Current state of industrial heating and opportunities for decarbonization.” Progress in Energy and Combustion Science 91.

34 Assumes ~$10M of CAPEX required for a kiln bypass for alternative fuels and $15–50M of CAPEX for clinker substitution (based on estimated costs for mine or quarry expansion and additional storage and grinding equipment, both outside-in estimates and estimates provided in conversations with industry). There is significant potential for variability in CAPEX on a site-specific basis, depending on the local availability of materials and existing infrastructure. In outlier cases, $100–200M+ could be required. Sizing also assumes that cost per plant does not change with plant size, based on the assumption that similar equipment is required regardless of plant size. Detailed CAPEX assumptions are provided in Appendix A.
Track B: CCUS

Key takeaways

1. **CCUS is a promising lever for cement decarbonization given the U.S. policy environment.** Industry believes CCUS will be critical for decarbonizing the ~60% of cement emissions intrinsic to the calcination process.

2. **The economics are challenging today.** CCUS could come with ~$35–75 of incremental cost per tonne of CO2 and ~$25–55 per tonne of cement, even with 45Q.

3. **Liftoff will depend on coordinated procurement by large buyers to address challenging economics** by supporting necessary premiums and unlocking capital formation at the $0.5–1.0B per plant scale required.

The industry expects CCUS to play a key role in decarbonizing cement, but the technology is in the early stages of demonstration and deployment. Published industry and third-party roadmaps for the sector highlight CCUS, including retrofits of existing plants and incorporation into new builds, as a critical lever, potentially driving ~50–60% or more of cement decarbonization by 2050 (in the absence of alternative approaches).\(^3\text{iii}, \text{iv}, \text{v}\) But economics are challenging, and business models still need to be validated for plant operators and investors without experience with the technology. Liftoff is not assured in the absence of government financing, incentives, and demand for low-carbon materials.

Government financing, incentives, and demand will be critical in accelerating CCUS deployment in the cement industry. Public funding can help enable initial commercial-scale deployments in the U.S. The 45Q tax credit offers $85 per tonne of CO2 captured and permanently stored, improving the economic proposition of CCUS and helping to unlock the private sector business case for deployment. Large-scale procurement of low-carbon materials can create an enduring demand signal and potentially support cost premiums that may be needed for projects to be economically viable.

\(^{35}\) Based on analysis for CCS. Economic analysis was also performed for CCU and is discussed in the body of this section.
Figure 3.4: CCUS economics

<table>
<thead>
<tr>
<th>CCS and CCU costs, est. $ / ton of CO2 captured</th>
<th>Unit economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequestration</td>
<td>Remaining premium net of 45Q</td>
</tr>
<tr>
<td>~55-65</td>
<td>~35-75</td>
</tr>
<tr>
<td>~25</td>
<td>85</td>
</tr>
<tr>
<td>~30</td>
<td></td>
</tr>
<tr>
<td>~10-40</td>
<td></td>
</tr>
<tr>
<td>Utilization</td>
<td>Additional revenue or premium required</td>
</tr>
<tr>
<td>~55-65</td>
<td>~50-60</td>
</tr>
<tr>
<td>~25</td>
<td>60</td>
</tr>
<tr>
<td>~30</td>
<td></td>
</tr>
<tr>
<td>~110-120</td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>Total cost</td>
</tr>
<tr>
<td>~45Q</td>
<td>~120-160</td>
</tr>
<tr>
<td>O&M</td>
<td>~45Q</td>
</tr>
<tr>
<td>~35Q</td>
<td></td>
</tr>
<tr>
<td>Fuel & power</td>
<td></td>
</tr>
<tr>
<td>~30Q</td>
<td></td>
</tr>
<tr>
<td>Transportation & storage</td>
<td></td>
</tr>
<tr>
<td>~30Q</td>
<td></td>
</tr>
<tr>
<td>Total cost</td>
<td></td>
</tr>
<tr>
<td>~120-160</td>
<td></td>
</tr>
<tr>
<td>~45Q</td>
<td></td>
</tr>
<tr>
<td>~35Q</td>
<td></td>
</tr>
<tr>
<td>45Q</td>
<td></td>
</tr>
<tr>
<td>Potential sources of cost improvement</td>
<td></td>
</tr>
<tr>
<td>Learning effect and reduced cost of capital from FOAK to NOAK</td>
<td>Nationwide buildout of carbon management infrastructure</td>
</tr>
<tr>
<td>Alternative capture technologies (e.g., capture of more concentrated streams)</td>
<td>Offsetting revenue from carbon utilization</td>
</tr>
</tbody>
</table>

Figure 3.4. Illustrative economics for CCS and CCU deployments at a representative 1.5 MTPA cement plant. Figures for carbon capture are based on NETL 2023 modeling for 95% capture at a preheater/precalciner kiln fueled with coal and coke, using the CANSOLV amine-based post-combustion system. Capital costs are adjusted to reflect a 12-year payback period, consistent with what investors have said they will likely be willing to underwrite, using capital recovery factors provided by the Energy Futures Initiative. Transportation and storage cost of ~$10–40 per tonne of CO2 is assumed, consistent with the Carbon Management Liftoff report. Buildup yields a cost of ~$110–120/t CO2 without and ~$120–160 with transportation and storage. Assumes the project can capture the full value of the 45Q tax credit ($85/t CO2 for CCS and $60/t CO2 for CCU). In practice, the value of the tax credit that a CCU project can capture is contingent on a life cycle assessment of displaced emissions by NETL and FECM and could be a fraction of the full $60 potential credit. The figure for CCU is, therefore, a low-end estimate for the cost-revenue gap to bridge, as projects may require both additional transport infrastructure to transport captured carbon to another facility and likely will not be able to capture the full $60 value of the tax credit due to the volume mismatch between the CO2 captured and the CO2 that can be utilized with current technologies. Specific methodology is provided in the appendix. Sydney Hughes, and Patricia Cvetic. (2023, Mar.). Analysis of Carbon Capture Retrofits for Cement Plants. NETL. Energy Analysis | netl.doe.gov. Jeffrey D. Brown et al. (2023, Feb.). Turning CCS projects in heavy industry and power into blue-chip financial investments. Energy Futures Initiative. EFI – CCS Report (energyfuturesinitiative.org).

CCUS deployments necessarily drive incremental costs. Capturing and storing 95% of emissions at a representative 1.5 MTPA cement plant could cost ~$35–75 per tonne of CO2 and ~$25–55 per tonne of cement (equivalent to a ~20–40% premium on a $130 per tonne base price), even with the benefit of $85 per tonne of CO2 from the 45Q tax credit. CCS systems would thus need to achieve ~30–45% cost downs or corresponding revenue uplift for projects to break even with 45Q support. Without 45Q, capture and storage could cost ~$120–160 per tonne of CO2 and ~$85–120 per tonne of cement (~70–90% premium).36, cvi, cvii

High costs have three primary drivers:

- **Upfront capital costs:** A CCUS project can require $0.5–1B in CAPEX, and capital costs can account for ~50–55% of the total (excluding transportation and storage), driven by the cost of construction and the high cost to finance projects with a shorter payback period (e.g., 12 years required for projects to be economically viable with 45Q support). Total capital cost per tonne of CO2 is ~$55–65 with a 12-year payback period compared to ~$45–50 with a 30-year payback (~20–25% higher).cvii

36 See Figure 3.4 for a discussion of the methodology used for cost analysis. A detailed methodology is provided in Appendix B.
Operating costs from substantial fuel and power consumption: Fuel and power needed for energy-intensive capture processes account for ~20–25% of levelized costs (excluding transportation and storage) and are particularly exposed to inflationary effects. In some cases, high energy demand could also drive additional costs not accounted for in the NETL modeling, such as the need to build a captive power plant if sufficient power cannot be drawn from the grid.

Potential for high CO2 transportation and storage costs: Transportation and storage costs can vary widely based on site-specific conditions, such as whether the plant has access to an existing Class VI well for sequestration, how far away that well is, and how much additional pipeline and other supporting infrastructure needs to be built out. This analysis assumes $10–40 per tonne of CO2 in transportation and storage costs, consistent with prior NETL modeling and the Carbon Management Liftoff report, but the upper bound could be significantly higher for projects in less favorable geographies.

However, industry is confident that CCUS systems can be deployed with minimal opportunity cost from plant downtime. Conversations with industry suggest CCUS systems can be built in parallel to operating plants and integrated during the planned ~2–3 weeks of annual downtime for relining of the kiln, which keeps opportunity cost from shutdowns to a minimum. If more substantial overhauls of the plant footprint are required, opportunity costs from lost operations could be significant, as discussed in Chapter 2.

Alternative CCUS technologies could eventually enable lower-cost deployments. Preliminary studies suggest that alternatives to traditional post-combustion amine-solvent systems like oxy-combustion and calcium-looping systems could be cheaper to build and operate, though these technologies remain at earlier stages of deployment readiness and public data on cost and performance remain limited.

Carbon utilization offers another potential route to improve project economics if high-value products can be produced. Using captured carbon to manufacture valuable products, CCU applications could generate additional revenue streams to help offset costs. Assuming it can capture the full $60 per tonne of CO2 45Q tax credit for carbon utilization projects, a CCU deployment would need to bridge a cost gap of ~$50–60 per tonne of CO2 and ~$35–45 per tonne of cement. However, this calculation is a low estimate: the value of the tax credit that CCU projects can capture is contingent on a life cycle assessment evaluated by NETL and FECM, and projects accordingly may not capture the full $60 value. CCU projects may also incur additional costs associated with the transportation of captured carbon to separate facilities and the operation of those facilities that will have to be offset by revenues.

The U.S. has a growing start-up ecosystem focused on using captured carbon to “cure” cement, concrete, and other construction products, though these are still typically pre-cast applications with a smaller accessible market and competition from low-cost alternatives. Many of these technologies remain nascent—largely pre-pilot or early pilot stage or are deployed at limited scale—but could also see additional demonstration and deployment in the mid-to-late-2020s, consistent with Liftoff in the 2030s.

CCUS Liftoff is contingent on the market finding ways to reduce, offset, and otherwise manage these high deployment costs, and government action can play a critical role.

A next, larger wave of deployments will likely remain focused on sites in optimal geographies, where

20 studies of various technologies were reviewed in the DOE Industrial Decarbonization Roadmap (p. 148). Estimates come from 2006 to 2020 and are not adjusted to FY22 dollars or harmonized but broadly suggest that alternatives to post-combustion amine-solvent capture can be significantly cheaper, potentially closer to ~$40–60 per tonne of CO2.
projects can benefit from lower transportation and storage costs enabled by existing carbon pipelines, Class VI wells, and economies of scale from nearby CCUS project clusters. Among other regions, parts of PA, CA, the Gulf Coast, and the industrial Midwest could offer favorable conditions for large-scale deployment (Figure 3.5). Coordinated procurement will be critical to support necessary premiums and unlock the investment case for capital-intensive projects.

Deployment at remaining, less favorable sites will come last, benefitting from the cost reductions driven by learning effects, commercialization of new CCUS technologies, and buildout of shared carbon management infrastructure while relying on coordinated procurement to enable investment and economic viability.

Figure 3.5: U.S. cement plants and CCUS infrastructure

![U.S. cement plants and CCUS infrastructure map](image)

Scaling CCUS across the entire industrial base could require ~$2–5B of investment by 2030 to support an initial 3–5 demonstrations, followed by up to an additional ~$55–100B of investment by 2050 for deployment at remaining and potential new-build plants (not accounting for potential reductions in capital costs or scale-up of alternative technologies in parallel). Scale-up of CCUS could come with additional concerns from the public about environmental, health, and justice impacts, and projects will have to engage proactively with communities.

Methodology for capital formation estimates provided in Appendix C.
and the public to ensure concerns are addressed (discussed in greater detail in Section 3.c and Chapter 4).

Track C: Alternative production methods for traditional cements

Key takeaways

- **Alternative production methods are still nascent, but could also scale in the 2030s.**
 To achieve Liftoff alongside CCUS, these technologies must demonstrate technological and economic viability commercially and prove they can enter the market under existing standards.

- **Greenfield plants will be capital-intensive—potentially ~$0.5–1.0B of CAPEX per deployment.** Coordinated procurement will again be critical to support premiums for FOAK deployments and enable capital formation.

Alternative production methods for traditional cement are emerging and could scale rapidly in the 2030s, provided they meet key milestones in the mid/late 2020s. These methods use fundamentally different approaches to produce drop-in replacements for traditional Portland or similar cements. They include alternative feedstocks, electrochemical production systems, and other alternatives to emissions-intensive rotary kilns (discussed in Chapter 2). Liftoff in the 2030s will require continued performance improvements, cost reductions, and significant public financial support.

Figure 3.6: Economics of alternative production methods

Figure 3.6. Illustrative economics and business model for alternative production methods. Alternative production methods could come with initial CAPEX and OPEX premiums compared to traditional production but can achieve parity by reducing these premiums and generating offsetting sources of revenue (e.g., production of SCMs and other valuable byproducts). Based on conversations with start-ups and investors pursuing alternative production methods. Figure does not reflect any one company or business model and is based on anonymized and aggregated information from multiple companies. Quantitative estimates are not provided due to limited performance history and public data.
Alternative production methods will have to meet key milestones with initial demonstrations in the mid/late-2020s to deploy on the timeline envisioned:

Performance: These technologies must demonstrate consistency with traditional cement products. They must work at commercial scale and yield products close enough to drop-in replacements for traditional Portland cements to enter the market under existing standards and with customers’ trust. If this latter condition is not met, the timeline for broad market adoption could be pushed out significantly, as is the case with the alternative chemistries in Track D.

Competitive economics: Alternative production methods must achieve competitive economics with traditional production methods and CCUS. FOAK deployments will likely see a premium compared to traditional production, driven by a combination of high CAPEX (~$0.5–1B for a greenfield plant at commercial scale, potentially compounded by high financing costs) and an OPEX premium (e.g., from increased power consumption for energy-intensive processes). Business models generally assume some combination of the following:

- CAPEX premiums can be reduced from FOAK to NOAK by learning effects, improved financing conditions, and reduced cost of capital.
- OPEX premiums can be reduced by learning effects, economies of scale, and supply-chain maturation (in particular, the availability of process-optimized components that can improve plant efficiency).
- Remaining premium can be offset or more than offset by revenue from the sale of process byproducts (e.g., SCMs and other construction materials).

Coordinated low-carbon procurement will still be required to enable Liftoff by supporting the premium needed for initial deployments and providing a demand signal to attract capital at the multibillion-dollar scale required. These technologies could achieve Liftoff as follows:

- Initial commercial-scale demonstrations are launched in the mid-to-late-2020s, potentially with government funding and enabled by large-scale low-carbon procurement. ~3–5 technologies would demonstrate viability against key milestones, help achieve initial cost reductions, and prove competitiveness with traditional production methods and CCUS.

- If the economics prove viable and competitive, these technologies could scale with new-build plants in the 2030s and 2040s, either licensing the technology to incumbents or attempting to take market share themselves. The strong demand signal from coordinated government and private-sector procurement will again play a critical role in mobilizing required capital.

Liftoff could require ~$2–5B by the early 2030s for an initial ~3–5 demonstrations, with up to an additional ~$55–100B of investment by 2050 for new-build plants to decarbonize the full industrial base (trading off with CCUS deployments depending on whether site-specific conditions favor CCUS or an alternative production method).
Pathways to Commercial Liftoff: Low-Carbon Cement

Track D: Alternative chemistries

Key takeaways

- Alternative binders to traditional clinker could have substantial abatement potential, but are far from widespread adoption. Though they can build initial market share and scale in non-structural niches, these materials could face a ~10–20+ year adoption cycle to be accepted under widely used industry standards and achieve full-scale deployment in the broader market.

- Accelerated customer adoption of performance-based standards like ASTM C1157 could significantly pull forward the adoption timeline. Expanded use of performance-based standards in project specifications could allow novel materials to be deployed without developing new standards (potentially a 10+ year process).

Another set of technologies is similar to the alternative production methods following Track C, but, rather than produce drop-in replacements for cements currently in use, these technologies produce low-carbon cements with fundamentally different chemistries.

These alternative binder chemistries are generally nascent today, but could achieve Liftoff on a longer timeline after building initial momentum in niche applications and overcoming R&D, market adoption, and economic barriers.

Alternative chemistries are in different stages of technological maturity, market access, and economic viability, but all have significant progress to make before they can achieve large-scale deployment. Some materials, including magnesium oxides derived from magnesium silicates (MOMS) clinkers and certain bio-based and engineered clinkers, remain in the pre-pilot or pilot stage and will need additional R&D investment to progress. Others, including belite clinker, sulphoaluminate clinker, and alkali-activated binders, are commercially available, but only on a small scale. Performance is not yet well-characterized, and these materials are not approved for widespread use under existing industry standards, leaving them generally confined to a small subset of applications.

Alternative chemistries are on a longer track to Liftoff, and timelines will chiefly be determined by the industry standards process and adoption cycle:

- In the short term, R&D investment—with government support—can facilitate the continuing development of alternative materials that remain in the pilot or pre-pilot stage and conduct performance testing and validation of materials at higher levels of technological maturity.

- When deployable, alternative chemistries can establish an initial market share in more accessible niches, e.g., lower-risk, non-structural, pre-cast, and decorative applications (~15% of the market). This foothold can enable initial production scale and cost reductions, while allowing new materials to establish a track record of field performance.

- In parallel, ASTM and AASHTO standards must be updated to allow alternative chemistries in a wider range of applications, particularly building and transportation use cases accounting for >80% of demand. This process is expected to take 10+ years and will drive significant lead time for commercialization.

- Even under optimistic assumptions about the timeline for approval, it could take until the 2040s for these materials to achieve a sizable market share. Following approval under industry standards, customers can adopt alternative chemistries at a greater scale, potentially incentivized by demand for low-carbon construction and cases where alternative chemistries can offer economic or...
performance improvements over traditional cement products. Rollout will likely be gradual, given the industry’s slow adoption cycle, potentially taking another 10+ years.

Yet this timeline for full-scale adoption could be accelerated significantly by expanded use of performance-based standards, allowing alternative chemistries. Customers already have access to a performance-based standard, ASTM C1157, but it is not widely used. If customer education can convince a large share of the market to speed the adoption of ASTM C1157 and other performance-based standards, the timeline for broader adoption of alternative chemistries could be pulled forward significantly. Similarly, some large customers (e.g., large state DOTs like CalTrans) conduct their own testing and validation of materials independent of ASTM standards. Alternative chemistries that qualify under these supplemental testing regimes could grow their market share more rapidly.

Applied R&D opportunities on emerging technologies

There will be a continuing need for applied R&D across technologies and approaches. Some technologies like kiln electrification, expanded use of hydrogen, and some alternative SCMs and binder materials are at low TRL today and will require ongoing investment in basic R&D. Other critical technologies that are potentially closer to deployment, but still earlier stage, including CCUS, alternative production methods, and alternative binder chemistries, will require R&D investment both upfront and throughout the commercialization process to bring them to market and facilitate rapid deployment. Transformational technologies also have associated systems, facilities, and supply chains that will require their own R&D investment and improvement to ensure they can scale, integrate, and operate at maximal efficiency. Even technologies broadly or near-deployable today (e.g., clinker substitution, energy efficiency measures, alternative fuels) will require ongoing investment in applied R&D to improve performance and economics, maximize abatement potential, and speed commercialization by overcoming barriers encountered in the field.

DOE’s Industrial Decarbonization Roadmap identifies key areas of focus for R&D investment across CCUS, low-carbon fuels and feedstocks, electrification, and efficiency levers, achieving impact on three time horizons:

- **“Near-term” (2020–25) needs**: support for low-capital measures (e.g., continued improvements in energy efficiency and waste-heat recovery), lower-carbon fuels and process heat (e.g., clean hydrogen, greater use of biofuels), and improvements to CCUS technology to enable more cost-effective capture on dilute emissions streams.

- **“Mid-term” (2025–30) needs**: development of increasingly ambitious low-carbon cement blends, routes for improved material-use efficiency and flexibility, process adaptations (e.g., precalciner electrification, alternative heating approaches, large-scale use of hydrogen), and advanced CCUS capabilities (e.g., oxy-combustion and indirect calcination, large-scale utilization).

- **“Longer-term” (2030–50) needs**: development of a circular approach for concrete, breakthrough heating approaches like kiln electrification and large-scale use of clean hydrogen, and innovative carbon capture and utilization approaches.

Although impacts will be felt on different timelines, early and sustained investment in all key areas will be critical to delivering technological improvements that can expedite deployment, improve economics and deployment-readiness of key levers, and unlock breakthrough approaches to accelerate decarbonization.
Section 3.b: U.S. leadership and technology export potential

With aggressive action, the U.S. can lead the world in cement decarbonization. Technologies developed, commercialized, and scaled domestically can be exported to address the ~7–8% of global carbon emissions from cement. Scaling low-carbon cement technologies worldwide will require business models that reflect other countries' economic and resource constraints, particularly in the developing world.

International cement decarbonization roadmaps lean heavily on technologies where the U.S. can play a key leadership role (examples reviewed in Figure 3.7). Published roadmaps suggest CCUS could abate ~35–50% of emissions, new processes ~5–15%, and material substitution ~5–15% (Figure 3.7).

Figure 3.7: International decarbonization pathways for cement

Comparison of international decarbonization pathways,
Share of emissions abated by measure, % in 2050

<table>
<thead>
<tr>
<th>Measure</th>
<th>Global</th>
<th>China</th>
<th>India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unabated emissions</td>
<td>11%</td>
<td>7%</td>
<td>9%</td>
</tr>
<tr>
<td>CCUS</td>
<td>9%</td>
<td>9%</td>
<td>13%</td>
</tr>
<tr>
<td>Material substitution</td>
<td>38%</td>
<td>45%</td>
<td>40%</td>
</tr>
<tr>
<td>Alternative fuels</td>
<td>5%</td>
<td>9%</td>
<td>16%</td>
</tr>
<tr>
<td>Lifecycle (e.g., demand reduction, grid decarb, CO2 uptake)</td>
<td>1%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>New processes</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Efficiency & alternative fuels</td>
<td>4%</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>Efficiency</td>
<td>4%</td>
<td>13%</td>
<td>13%</td>
</tr>
</tbody>
</table>

In the short term, the U.S. can focus on commercializing and exporting the highest-impact measures that are currently deployable:

- Clinker substitution. The U.S. can help accelerate the global deployment of clinker substitutes by domestically validating and scaling more aggressive low-carbon blends and new SCMs like calcined clays, demonstrating technologies and business models for international use. Realizing the ~20–30% abatement potential of more aggressive clinker substitution worldwide could cut ~1.5–2.5% of all global CO2 emissions, using technologically proven measures with a strong economic case today. 39

 39 Based on 20-30% of ~7–8% of global emissions.
Longer term, the U.S. could have a transformative impact in accelerating global cement decarbonization by pioneering two deep decarbonization business models for export:

- **Low-cost CCUS**: A U.S.-developed business model for CCUS that does not require a substantial premium or cost support could be transformative for global cement decarbonization. The U.S. is positioned to lead the world in CCUS deployment across industries, with the potential to achieve key technological and economic breakthroughs domestically before exporting internationally. With its favorable policy and market environment for carbon management, the U.S. could de-risk, scale, and reduce the cost of capture systems, including serving as the global proving ground for new, lower-cost technologies that can be deployed worldwide. Because many countries lack the extensive carbon storage capacity of the U.S., developing and commercializing cost-effective forms of carbon utilization at scale, in addition to capture, could be particularly critical for unlocking wider global deployment.

- **Alternative production methods**: If alternative production methods achieve Liftoff, including reaching cost-competitiveness with traditional cement production, they could also have significant export potential. American companies that successfully commercialize new low-carbon production methods could capitalize on market growth to build greenfield plants overseas.

Section 3.c: Workforce and energy and environmental justice (EEJ) implications

Decarbonization of the cement sector must occur in a way that ensures the creation of quality jobs and addresses the concerns and protects the health and environmental quality of fenceline communities, both to meet the country’s climate, economic, and EEJ imperatives and to ensure the success of projects in these communities. This report takes a broad look at workforce and energy and environmental justice concerns to highlight the key opportunities that can arise from cement decarbonization, as well as the risks that must be mitigated to protect communities from additional harms.

This report does not include a comprehensive analysis of non-GHG emissions from cement production (e.g., other criteria air pollutants), specific industry workforce considerations, or technical solutions for EEJ concerns. This qualitative analysis is the beginning of what must be a robust discussion of how actually to implement a just decarbonization strategy. Additional work from many stakeholders is needed to outline tactical solutions toward a shared goal of a prosperous, just net-zero economy.

Companies, investors, and public- and private-sector stakeholders across the entire value chain are critical in determining whether projects advance a just and equitable transition to net zero or exacerbate existing injustices. "Pathways to Commercial Liftoff: Overview of Societal Considerations and Impacts" covers key workforce and energy and environmental justice (EEJ) considerations, recommends specific actions, and provides online resources. Detailed discussion of workforce and EEJ considerations in the context of industrial decarbonization is provided in the Pathway to Commercial Liftoff: Industrial Decarbonization report. The section below covers EEJ considerations and impacts specific to the cement sector.

The EEJ impacts of low-carbon cement projects depend on the benefits and harms incurred, who experiences them, and how the impacts alleviate or compound existing burdens. Industrial facilities are disproportionately concentrated in geographic areas with higher shares of households with low incomes and residents who are not white, which have historically borne the brunt of adverse health and environmental impacts without corresponding access to the economic benefits of industrial activity. It will be vital to anticipate and mitigate potential adverse effects of industrial transformation. Large-scale projects must be undertaken in consultation with local communities and with community buy-in to protect often marginalized populations and ensure project success.

Broadly, decarbonization and transformation of the industrial base for cement is an opportunity to address historical environmental injustices and contribute to frontline communities’ health, environmental quality, and economic vitality. Specific dimensions are considered below.
Section 3.c.i: Economic impacts

Workforce and economic benefits

Decarbonization can be a positive opportunity overall for the cement and concrete workforce. Buildout of retrofits and greenfield plants can create good-paying construction jobs. As the broader construction sector faces pressure to decarbonize, decarbonizing cement production can position cement and concrete producers to continue to compete and thrive, helping to protect the ~210,000 jobs currently in cement and concrete products manufacturing. cxxviii

Constraints in the construction workforce, particularly shortages of workers in skilled trades, could impede the scale-up of low-carbon technologies. cxxix, cxxx It will be critical for U.S. to invest in job training (especially Registered Apprenticeships), intentional efforts to recruit and retain underrepresented populations, and other measures to build the workforce pipeline for these essential trades, not just for cement but for decarbonization of the economy and infrastructure buildout more broadly. Growing and maintaining the skilled workforce needed to achieve climate and industrial strategy goals will be contingent upon creating good-paying jobs with opportunities for professional development and career advancement, as well as high safety standards. Success will require effective collaboration between industry, labor and worker-serving organizations, and government. cxxxi

It will also be vital to ensure that jobs and other economic benefits of sector transformation flow to frontline communities. Project developers can engage in community benefits agreements and develop community benefits plans to make commitments about the kinds of local benefits they will provide, as well as conditions of employment (including committing to wages, benefits, and health and safety standards) and job-training investments. cxxxi Job training, such as registered apprenticeship programs, intentionally inclusive recruitment and retention strategies, such as financial and non-financial supportive services, and negotiated agreements between community stakeholders, are all critical tools to enable historically disadvantaged and underrepresented communities to participate in the economic benefits of local development. cxxxi

Cost of goods

Because cement is a critical upstream input for a wide array of critical goods (e.g., infrastructure, housing), impacts on cost can have far-reaching implications. Some interventions (e.g., clinker substitution and alternative production methods, provided they can achieve economic competitiveness compared to traditional production methods) could reduce the cost of cement production, with the potential for savings to eventually pass downstream to consumers. Though downstream cost implications may be limited (as cement typically accounts for a small share of overall project costs), in cases where structural cost increases may be incurred (e.g., CCUS), efforts must be made to protect consumers from cost increases, particularly those who are most economically vulnerable. In many cases, the 45Q credit, other tax incentives, and Infrastructure Investment and Jobs Act (IIJA)40, also referred to as the Bipartisan Infrastructure Law (BIL) / IRA programs will help to defray costs and insulate consumers from cost increases.

Section 3.c.ii: Health and environmental quality impacts

Air quality

Cement production has historically been associated with significant air-quality concerns and harm to surrounding communities, including emission of SO$_2$, NO$_x$, and CO. cxxxiv Decarbonization efforts can come with additional risks to be mitigated and opportunities to address air-quality concerns associated with cement production. Alternative fuels, particularly waste-based fuels like tires, plastics, and waste oils, can come with air pollution risks that must be mitigated. cxxv, cxxvi, cxxvii Carbon-capture retrofits and shifts away from kiln-based production methods also offer opportunities to improve local air quality by implementing new pollution-control and abatement measures (e.g., “scrubbing” of NO$_x$, SO$_2$, and particulate matter before carbon capture). cxxvii, cxxix

Raw materials

Building out the supply chain for input materials also presents both risks and opportunities for the health and environmental quality of frontline communities. SCMs are disproportionately sourced in vulnerable communities, creating added risk and a particularly strong equity imperative to anticipate and address potential harms. Some SCMs and new feedstocks could require the development of new mining and quarry operations and supporting infrastructure, and any such redevelopment must be done in a manner that does not compromise the health and environmental quality of surrounding communities. cxxx

Using ponded coal ash as an SCM can contribute to the remediation of brownfield sites, improving the economics of costly remediation projects and providing a safer way of disposing of hazardous materials. cxxxi

Efforts must be undertaken to ensure that ponded ash is handled safely and that redevelopment projects are undertaken consistent with the health and safety of surrounding communities.

Section 3.c.iii: Carbon management concerns

CCUS will likely be a major part of the decarbonization pathway for the cement sector. The public may have broader concerns about carbon management projects, including potential health and safety impacts of CO2 transport and storage infrastructure, the cumulative burden on local communities (e.g., extending the lifetime of emissions-intensive facilities), and potential financial support for companies with a poor track record on climate and environment. Successful delivery of CCUS projects will hinge on effective engagement with both local communities and the broader public to ensure risks and concerns are addressed. These potential risks, concerns, and approaches to public engagement and accountability are considered in detail in the Carbon Management Liftoff report. cxxxii
Chapter 4: Challenges and solutions

Key takeaways

1. **Large-scale buyers, particularly government agencies, can develop shared standards for low-carbon materials** to enable informed and effective procurement.

2. **Overall adoption cycle for new materials will have to be compressed from ~10–20 years to ~5–10** to meet aggressive deployment targets for the early 2030s. Accelerated adoption will require a combination of demand-side incentivization, market education, and technical assistance.

3. **Capital-intensive deployments will require new procurement models with long-term offtake commitments to unlock required investment.** For example, a 10 to 12-year, ~$0.5–2.0 billion offtake agreement could be at the scale needed to unlock investment to retrofit one representative 1–1.5 MTPA plant with CCUS or to support the construction of a greenfield plant using an alternative production technology.

4. **Longer term, deep decarbonization technologies like CCUS could require initial government-backed interventions** to offset structural cost increases, including support from 45Q, premiums supported by low-carbon procurement, and updates to construction codes requiring low-carbon materials.

With concerted effort, the U.S. is positioned to recapture global leadership on low-carbon cement and lead on the commercialization of multiple key technologies. Stable policy support and favorable market and geological conditions make the U.S. the world’s most attractive destination for CCUS today. In parallel, a vibrant U.S.-based startup ecosystem could bring revolutionary low-carbon cement technologies to market in the coming decades.

Rapid Liftoff of these technologies is possible, but contingent on overcoming six key challenges to compress adoption timelines for deployment-ready technologies and accelerate the commercialization of new approaches. Several additional challenges specific to CCUS are discussed in detail in the Carbon Management Liftoff report. These challenges include economic and commercial factors (e.g., cost uncertainty, demand uncertainty, lack of commercial standardization) and execution factors, (e.g., permitting lead times, limited transport and storage infrastructure, public concerns and opposition to projects).

Government action has a critical role in enabling solutions, leveraging both the power of government procurement and the government’s ability to convene and coordinate key stakeholders across the value chain. Private-sector leadership will also be required to set ambitious goals and collaborate in overcoming barriers.
Figure 4: Challenges to Liftoff and potential solutions

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Potential solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lack of robust system to define low-carbon materials makes it hard for large buyers to make informed procurement decisions</td>
<td>• Establish shared standards and data infrastructure to define and validate low-carbon cement and concrete products</td>
</tr>
<tr>
<td>2. ~10-20-year adoption cycle for new blends and materials delays demand and corresponding investment in decarbonization</td>
<td>• Invest in accelerated testing, validation, and demonstration of low-carbon cements and concretes</td>
</tr>
<tr>
<td>• Engage key end customers to encourage requirement of low-carbon materials in project specifications, including through adoption of performance-based standards</td>
<td></td>
</tr>
<tr>
<td>• Provide technical and financial assistance to facilitate adoption in the broader value chain</td>
<td></td>
</tr>
<tr>
<td>3. Informal, short-term procurement model is not well-structured to attract long-term investment</td>
<td>• Develop alternative procurement models that provide direct offtake for projects</td>
</tr>
<tr>
<td>4. Structural cost increases for CCUS and other approaches may permanently increase cost to end users</td>
<td>• Provide durable policy support to address challenging economics</td>
</tr>
<tr>
<td>• Provide coordinated procurement to support a long-term premium</td>
<td></td>
</tr>
<tr>
<td>• Update construction regulations to require use of low-carbon materials in projects</td>
<td></td>
</tr>
<tr>
<td>5. Technology, performance, and cost uncertainty discourage deployment and investment</td>
<td>• Provide support for early project development and creation of archetypal business models and terms</td>
</tr>
<tr>
<td>• Provide continuing investment in R&D for critical technology areas</td>
<td></td>
</tr>
<tr>
<td>6. Lack of public support for projects, driven by concerns about environmental and human health risks, EEJ and labor implications</td>
<td>• Implement robust community benefits plans and agreements that are responsive to public concerns, mitigate potential harms, and ensure accountability</td>
</tr>
</tbody>
</table>

Figure 4. Six key challenges and potential solutions highlighted in conversations with industry and key stakeholders across the value chain.

Challenge 1: The market lacks a robust system to define low-carbon materials, making it difficult for large buyers to make informed forward procurement decisions.

There is growing interest in the procurement of low-carbon cement and concrete products among government and private buyers, but markets broadly lack common, widely-scaled mechanisms for establishing and verifying which cement and concrete products qualify as sufficiently low embodied carbon. Without common standards and validation mechanisms, large buyers struggle to make informed procurement decisions and coordinate effectively to create a demand signal for industry.

Low-carbon procurement efforts rely on third-party “environmental product declarations” (EPDs), estimates of the embodied carbon of products (i.e., the emissions associated with their production, distribution, and use). Yet current EPDs come with key limitations, including:

- **Lack of standardization.** There is no single standard methodology to assess the embodied carbon of products in EPDs, making it challenging to compare cements and concretes during a competitive procurement process. The industry has expressed concerns that some EPDs are not effectively integrated with broader life cycle assessments, making it difficult to account accurately for the full life cycle impact of materials (e.g., the impact of durability and salvage or reuse potential). Challenges with standardization are compounded by fragmentation in the market, particularly in intermediate tiers of the value chain.

- **Limited data availability.** Data on emissions associated with specific inputs and production at specific facilities remains limited, making it difficult to produce accurate estimates of embodied carbon. Data may be available in many cases, but suppliers may not independently be incentivized or
resourced to make necessary investments in acquiring it. Without more robust data, some EPDs have historically relied on industry averages and have been unable to verify the true emissions content of products (though more recent efforts, e.g., GSA procurement standards, increasingly require facility-level data).

- **Limited accessibility for new products and facilities.** EPDs typically require a plant to have at least one year of operating history to provide needed data, which makes it challenging for technologies in the pilot stage or early deployment to receive EPDs and thus qualify for low-carbon procurement initiatives.

Solution 1: Establish shared standards and data infrastructure to define and validate low-carbon cement and concrete products for future procurement.

A shared standards regime to support low-carbon procurement will include three main elements outlined below, and federal efforts currently underway can provide a strong foundation for a long-term standards model.

- **Common definition of low-carbon cements.** Large government and industry buyers can convene to develop shared standards for what qualifies as low-carbon cement and concrete. Efforts can follow the lead of multiple actors, public and private, that have begun developing initial standards, including NIST, the First Movers Coalition (FMC) and GSA. FMC has already established a standard for low-carbon concretes used by its members in the construction and real estate industries, and GSA has set specific standards for “substantially lower embodied carbon materials” based on EPA’s Interim Determination. It is important for standards to grow more stringent over time and set a sufficiently high bar to incentivize investment in deep decarbonization. A government-led or industry program after the model of EnergyStar could also provide voluntary certification of low-carbon materials that meet shared standards. With IRA funding, EPA is developing a carbon-labeling program for “substantially lower embodied carbon” construction materials.

- **Standardized approach and template for EPDs.** To implement these standards uniformly, the market must align on a common methodology for developing and validating EPDs. To capture the emissions impact of materials accurately, standard templates and methodologies should account for the impact of their full life cycle—including use in the field, potential reabsorption of CO2, and end of life, in addition to production—and incorporate digitized tracking for verification. A preliminary or provisional EPD mechanism will also be necessary to allow technologies at the pilot or early demonstration stage to qualify for low-carbon procurement. With IRA funding, EPA has led the initial work to establish standard practices for EPDs and can continue leading the market and shaping practices. The Federal-State Buy Clean Partnership has convened 13 states and the federal government to harmonize procurement standards.

- **Data collection and publication.** Development and widespread use of standardized EPDs will also require extensive collection and dissemination of data on emissions for various products. Large-scale government buyers can promote transparency by requiring the disclosure of emissions data as part of the procurement process. Efforts can build on existing EPD libraries like the Embodied Carbon in Construction Calculator (EC3) developed by Building Transparency and the federal LCA Commons to develop an industry-wide central, universally accepted repository.

Challenge 2: Historically, the industry has had a ~10 to 20-year adoption cycle for new blends and materials, which delays demand and subsequent investment in low-carbon production.

A multidecade adoption cycle will prevent the rapid deployment of clinker substitutes and delay the rollout of more novel materials. To realize maximal abatement potential and economic value by 2030, the adoption cycle for new blends and materials must be compressed from ~10–20 years to ~5–10 years.
The extended adoption cycle has three components:

- **Long lead times to update industry standards.** Updating ASTM and AASHTO standards is a lengthy process (historically 10+ years), imposing significant lead time for new materials to enter the market under prescriptive standards. Standards are developed through a consensus-based process by committees composed of volunteer industry experts. Industry organizations are justifiably risk-averse about allowing the use of new materials, particularly where there are life-safety implications. Changing standards to accommodate new materials requires extensive testing, validation, and consensus-building with a range of stakeholders, which significantly pushes out the timeline for adoption.

- **Slow uptake by risk-averse end customers.** Even when new blends and materials are accepted under industry standards, end customers are risk-averse and typically slow to adopt new materials into project specifications because of potential risks to safety, performance, cost, and schedules. Large government buyers, particularly state DOTs, can play a critical role in bringing along customers and shifting the market, but they tend to be risk-averse given their need for materials to perform to high standards in the field and be durable under challenging environmental conditions. Private construction, engineering, and development companies are likewise often slow to adopt new materials that may come with performance and cost risk and have broadly been reluctant to adopt new standards (e.g., performance-based standards that could allow alternative chemistries) into their specifications.

- **Slow uptake by intermediaries (e.g., ready-mix concrete companies and contractors) for technical and risk reasons.** Ready-mix concrete companies and other contractors are often small businesses with little margin for error on projects, limited internal resources for testing and validation, and limited capacity and appetite to adapt to the technical requirements of new materials. Anecdotal evidence suggests this was a challenge even with the more modest changes to cement mixes under the PLC rollout: PLC blends were not always perfect drop-ins for existing practices, and using them successfully involved a learning curve, complicating deployment.

Solution 2: Pursue targeted interventions to compress the adoption timeline.

Three priority approaches could help increase confidence in new blends and materials, encourage end customers to accelerate adoption into specifications, including through the use of performance-based standards, and facilitate uptake by intermediaries:

Solution 2.a: Invest in accelerated testing, validation, and demonstration of low-carbon cements and concretes.

Government and industry can partner to expand and expedite testing, validation, and demonstration of more low-carbon cement blends and novel materials to speed acceptance under industry standards, build market confidence, and drive adoption. Accelerating this process will require a buildout of testing infrastructure, funding for additional large-scale material demonstrations, and more proactive engagement with industry standards organizations.

Minnesota DOT’s “MnROAD” pavement test facility is a prime model for expanded testing. The facility includes segments of actively used roads and highways paved with different concrete and asphalt equipped with sensors to collect detailed data. These data can be used to evaluate material performance under a range of realistic deployment conditions. MnROAD is in the second year of a three-year effort to test concrete pavings made with several kinds of low-carbon cements, including PLC mixes with higher limestone content and blended cements with alternative SCMs (including some manufactured with sequestered CO2). Results will be published and used to inform and justify the adoption of new materials by state DOTs.

41 See, for example, the extended timeline required to change and approve standards for Portland Limestone Cements.
Similar efforts on a larger scale will be needed to test additional blends in additional geographies. Testing and validating more materials would need to be done in parallel to enable rapid deployment. This could be unlocked via modest investments to build out parallel facilities and accelerate needed materials testing—for example, MnROAD’s current operations are supported by ~$10M in grants.

Government and industry organizations can engage more proactively with ASTM and AASHTO to ensure test results are rapidly incorporated into industry standards. NIST, DOT, or another relevant agency can lead outreach to socialize test results, identify gaps in testing, and prioritize future research accordingly. NIST’s Low Carbon Cements and Concretes Consortium is already engaged in convening stakeholders for this kind of outreach. Modest funding support for standards-setting organizations could also allow committees to meet more regularly and provide them with the resources to accelerate the review of new materials.

Once materials are validated, public funding can support demonstration projects for low-carbon cements and concretes in various use cases and conditions, with sites chosen for high public visibility and results widely publicized to build broader market confidence. Initial demonstrations could focus on horizontal applications like roads, highways, and pavers, then expand to lower-risk vertical construction like single-story buildings.

Solution 2.b: Engage key end customers to encourage the requirement of low-carbon materials in project specifications, including by adopting performance-based standards.

Concerted engagement with key customers and broader market education to encourage the inclusion of low-carbon cements in project specifications can shorten the adoption cycle. Industry organizations and key government agencies can lead outreach by forming a central clearinghouse for collecting and publishing technical and economic data, convening customers, and conducting active outreach to share information about new materials and build confidence. Efforts can focus first on the largest and most influential buyers of cement, particularly state DOTs, to have a maximal impact on the market. U.S. DOT and the Federal Highway Administration (FHWA) can lead in coordinating outreach to state DOTs and facilitating knowledge-sharing to raise ambitions, build comfort with new materials, and accelerate rollout.

Similar efforts could speed the uptake of performance-based standards to facilitate expanded market access for novel chemistries. Similar efforts could speed the uptake of performance-based standards like C1157 to facilitate expanded market access for novel chemistries. Again, U.S. DOT and FHWA can collaborate with NIST, other relevant agencies, and industry organizations to engage with state DOTs and encourage broader use of performance-based standards. A coordinated effort can facilitate information-sharing, quickly surface challenges, and quickly bring the full breadth of government and industry resources to bear to address them.

Solution 2.c: Provide technical and financial assistance to facilitate adoption in the broader value chain.

As the sector pursues more novel blends and materials, coordinated technical and financial support can help address the difficulties intermediate players in the value chain (e.g., small ready-mix companies and subcontractors) have with the rollout.

Industry organizations and governments can partner with small ready-mix companies and subcontractors to address the technical challenges of working with unfamiliar materials with distinct requirements. Local ready-mix, aggregate, and construction trade associations will be vital partners in any such effort. They can convene key players and serve as the central venues for training and outreach, proactively identify and address challenges, and collect and disseminate technical best practices.
Challenge 3: The procurement model for cement is not structured to attract the investment required for decarbonization.

Cement is traditionally purchased through “handshake” spot transactions, as the nature of the construction market disincentivizes long-term purchasing commitments (discussed in Chapter 2). According to investors, these kinds of short-term agreements are difficult to use as the basis for securing low-cost infrastructure financing.

Purchasing agreements are also adjudicated between intermediate steps along the value chain, where there is significant fragmentation. An end customer seeking to purchase cement for a project rarely, if ever, contracts directly with a cement producer, but instead with a construction firm that purchases cement through multiple layers of intermediaries, such as ready-mix companies and other subcontractors. As a result, it is difficult to establish bankable offtake commitments that directly link end customer willingness to pay for low-carbon cement to cement producers who need to invest to meet that demand.

Absent bankable offtake, the cement industry will struggle to attract investment at the scale needed for deep decarbonization projects. Therefore, establishing low-carbon procurement standards by large buyers is unlikely to be sufficient on its own. Coordinated procurement programs can address these challenges with an alternative purchasing model.

Solution 3: Develop alternative procurement models that provide direct offtake for projects.

To make the demand signal for low-carbon cement bankable for risk-averse investors and enable project finance at scale, large-end customers must develop a procurement model that provides greater offtake certainty for low-carbon cement plants. To de-risk projects sufficiently, such a model could need to have three main elements:

- **A direct, legally enforceable contract** between the cement plant and a creditworthy end customer (e.g., a government agency, large private customer, or large construction company);
- **Guaranteed offtake for most or all of a plant’s output** for the investment period, with some guarantee regarding price; and
- **Active management of intermediaries in the supply chain** to ensure low-carbon cement products are used in the construction process, which could require offtakers to invest in improving visibility upstream in their project supply chains.

A range of options for such a model are available and actively explored by government and private-sector customers. Potential approaches include advance market commitments, direct procurement or structured offtake agreements, contracts for differences, contractual price guarantees, and advance purchase agreements for avoided carbon emissions.

Providing this guaranteed offtake with government procurement could require adopting alternative contracting models. Procurement experts at several federal and state agencies expressed concern that long-term offtake commitments could be at odds with acquisition requirements, but alternative contracting structures currently in use (e.g., Multiple Award Task Order Contracts and Indefinite Duration, Indefinite Quantity contracts already used by agencies to manage complex, long-term acquisition programs), could offer an alternative model. More complicated procurement mechanisms could require additional investment in the contracting shops at state DOTs and key federal agencies with less experience with these vehicles. Private buyers could have more flexibility in implementing new approaches but require greater coordination to build buyers’ coalitions and collectively implement new procurement models (e.g., through forums like the First Movers Coalition).

A 10–12-year commitment worth $0.5–2.0B total could provide sufficient offtake assurance to enable a project finance model for a commercial-scale retrofit or greenfield plant using novel decarbonization technology.
Pathways to Commercial Liftoff: Low-Carbon Cement

approaches. For a CCUS retrofit of a representative 1.5 MTPA cement plant, a $0.5–1.0B total commitment over 12 years could cover the total cost of the premium beyond 45Q. Over ten years, a ~$1.3–2.0B commitment could provide 100% offtake coverage for NOAK greenfield plants using alternative production methods or novel chemistries. Guaranteeing offtake from FOAK plants could require a larger commitment to cover the cost premium of early deployments.

Challenge 4: Deep decarbonization technologies, particularly carbon capture, may involve permanent structural cost increases.

If cost declines do not bring costs of key technologies below expected revenues, projects will struggle to achieve long-term economic viability. As discussed in Chapter 3, CCS deployments could involve a structural cost increase of $35–75 per tonne of CO2 with 45Q (equivalent to ~20–40% premium per tonne of cement) and $120–160 per tonne of CO2 without 45Q (equivalent to ~70–90% premium per tonne of cement). Adding incremental and permanent cost increases to cement can create ongoing challenges to the economic viability of business models and deter investment in scale-up depending on the policy environment.

Solution 4: Establish policy and market models that offset structural cost increases.

Additional revenue streams or incentives may be required to enable the long-term economic viability of deep decarbonization technologies that come with these structural cost increases. Government and industry can work in tandem to pursue policy, regulatory, and market mechanisms that help address the structural costs associated with CCUS and other decarbonization measures. Three priority actions are detailed below.

Solution 4a: Provide durable policy support to address challenging economics.

Policy support can help bridge remaining cost gaps after long-term cost declines. Approaches could include an extension of 45Q or other market-based mechanisms. Policy support can stack with other measures, such as revenues from other products and premiums (discussed in Solution 4b), which may be particularly important if cost declines are more limited.

Solution 4b: Provide coordinated procurement to support a long-term premium.

Government procurement programs can set aggressive standards for low-carbon materials and provide additional funding to support premiums. At the federal level, the Biden-Harris Administration’s Buy Clean Initiative seeks to leverage the government’s purchasing power to spur expanded manufacturing of low-carbon materials, pursuant to the Administration’s goal of achieving net zero in federal procurement by 2050. The Inflation Reduction Act provides $4.5B to support the procurement of low-carbon materials by GSA and U.S. DOT. At the state level, New Jersey’s Low Embodied Carbon Concrete Leadership Act (LECLLA) provides a tax credit to concrete suppliers on government projects that provide quantifiable reductions in embodied carbon, while other states are phasing in similar programs. Large private-sector buyers could adopt a parallel approach consistent with their decarbonization mandates.

However, passing a premium through multiple layers of intermediaries in the value chain will come with additional challenges. Intermediaries could impose additional premiums in each tier, diluting the effect of coordinated procurement. Success will likely hinge on the capacity of end customers to manage their supply chains more actively, which may require capacity-building in their procurement and contracting organizations.

42 Calculations are provided in Appendix B. Analysis assumes an offtake agreement would cover the remaining premium per tonne of cement after 45Q on cement sold by an existing plant.
43 Assumes alternative production methods can achieve parity with the current cement price of ~$130 per tonne, with a 10-year offtake to cover 100% of output for a 1–1.5 MTPA plant.
Solution 4c: Update construction regulations to require using low-carbon materials in projects.

State and local building codes and other construction regulations offer an opportunity to overcome cost barriers to decarbonized materials by prescribing their use in projects. Building and construction codes already require certain materials, typically for safety reasons, and could set similar requirements for low-carbon cements and concretes.

Some jurisdictions have already begun to implement such a model. Portland, OR, requires Portland cement concretes used in city-owned construction projects to have embodied carbon below a maximum value for a given strength class, verified by a third-party EPD. Marin County, CA, adopted a building code that requires all concrete placed in the county to meet either a limit on cement or embodied carbon that scales with the specified compressive strength of the material.

Because building and construction codes are generally defined at the state or local level, the change would likely be a slower process, working locality-by-locality. Efforts could start in large jurisdictions with the most construction activity to build market share and momentum, then try to achieve wider adoption nationwide. Under BIL and IRA, DOE has ~$1.2.b in funding to accelerate the adoption at the state and local level of traditional and innovative building energy codes, including zero energy codes and building performance standards.

Challenge 5: Critical emerging technologies face performance and cost uncertainty. Others remain at low TRL.

Measures like CCUS, alternative production methods, and alternative materials as applied to low-carbon cement remain untested at commercial project scale in the U.S.; cement companies and investors will need to see technologies and business models de-risked before they pursue the substantial capital investments required for deployment. Cement companies are also unfamiliar with these technologies and will need to build comfort operating CCUS systems or new kinds of plants before they can deploy at scale. Other critical technologies are at low TRLs or will need further progress on applied R&D to achieve necessary cost and performance improvements for widespread deployment.

Solution 5a: Support early project development and create archetypal business models and terms.

Support for early deployments in CCUS, alternative production methods, and alternative chemistries will be needed to reduce technology and execution risks. Three to five commercial-scale projects could be needed for each technology to prove it can be operationally and commercially viable at scale. Billions of dollars are potentially available through BIL and IRA to support these initial deployments, helping offset high costs and improve the economic viability of FOAK projects. To ensure initial deployments have their maximal effect in de-risking business models for investors and unlocking follow-on deployments, it will be important to collect and publish technical and economic data from initial demonstrations to inform future investment decisions. Similarly, developing standardized project and financing structures for these technologies can accelerate long-term buildout. Publication of project execution best practices, lessons learned, and project terms—particularly from projects that receive government support—can provide a replicable template for future deployments.

Solution 5b: Provide ongoing R&D investment to advance transformative lower-TRL technologies and accelerate adoption across technologies.

Where critical breakthrough technologies remain at lower TRL, continuing R&D investment can accelerate progress towards technological maturity and ultimate commercial-scale adoption. Start-ups, academic research organizations, and relevant parts of the DOE and other federal agencies, including IEDO and

44 Also discussed in the Carbon Management Liftoff report in the context of carbon management projects.
ARPA-E, can help catalyze and drive breakthrough R&D efforts. Non-profit organizations can also play a role by continuing to highlight the importance of research into cement decarbonization, particularly the next wave of deep decarbonization technologies, and fostering collaborative partnerships between research institutions, industry, and government agencies. More detailed discussion of potential R&D priorities is provided in Chapter 3 of this report and in DOE’s Industrial Decarbonization Roadmap. Additional discussion of challenges and solutions related to R&D is provided in the Pathway to Commercial Liftoff: Industrial Decarbonization report.

Challenge 6: Lack of public support for projects, driven by concerns about environmental and human health risks and EEJ and labor implications.

Fenceline communities and the public are often wary of industrial projects because of the history of adverse environmental, health, EEJ, and labor impacts they may bring. Ensuring community buy-in and addressing public concerns is not just an ethical imperative for developers—failure to build trust with the public can stymie project development, increasing costs by delaying progress and potentially leading to projects being non-viable altogether. For cement decarbonization, this challenge is particularly pronounced in the context of CCUS projects, which can require substantial buildup of infrastructure (including pipelines), are perceived as allowing continued use of fossil fuels, and may come with additional environmental impacts that have to be abated. 45

Solution 6: Implement robust community benefits plans and agreements that are responsive to public concerns, mitigate potential harms, and ensure accountability.

Community benefits agreements (CBA) are signed between developers and community groups that negotiate community support for a project in return for benefits from the developer. CBA negotiations are avenues for developers to engage with communities to understand how their project can meet with their goals while ensuring that community needs are met. These CBAs can incorporate mechanisms designed to mitigate the impacts from project development that the community is concerned about. Selected examples include requiring the usage of state-of-the-art scrubbers for facilities that may come with air pollution concerns, investments in local infrastructure, job training and local hiring requirements, and implementation of GHG reduction programs.

45 Discussed in detail in the Carbon Management Liftoff report.
Chapter 5: Metrics and milestones

The DOE will track two types of key performance indicators to understand the progress needed for successful decarbonization of the cement sector.

- **Leading indicators** are signs to evaluate the present status of technology readiness, market adoption readiness, and penetration of key technologies.

- **Lagging indicators** are retroactive verification of the successful or unsuccessful scaling and adopting of decarbonizing technologies (e.g., evaluations of progress toward net-zero targets).

The indicators outlined below can be used to track industry milestones and evaluate decarbonization progress. These metrics allow the integrated tracking of leading and lagging indicators, which can be updated and shared regularly. These milestones do not represent DOE targets but are important progress markers to create confidence across the ecosystem.

<table>
<thead>
<tr>
<th>‘Track’</th>
<th>Leading indicators / milestones</th>
<th>Lagging indicators / milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>✩ Total investment in low-carbon cement</td>
<td>✩ Volume of low-carbon cement produced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✩ Emissions intensity per tonne of cement industry-wide</td>
</tr>
<tr>
<td>Coordinated procurement model to unlock demand-pull across tracks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>✩ Common methodology and standards for embodied carbon in cement and concrete (e.g., standard LCA methodology, EPD template) established and accepted by governments and the private sector</td>
<td>✩ Share of government-driven cement procurement covered by low-carbon materials standards</td>
</tr>
<tr>
<td></td>
<td>✩ ‘Library’ of EPDs for low-carbon cement and concrete products established and made widely available</td>
<td>✩ Overall emissions intensity of government-purchased cement and concrete</td>
</tr>
<tr>
<td></td>
<td>✩ Commitments by large government and private-sector customers to buy low-carbon materials</td>
<td>✩ Share of private-sector cement procurement covered by low-carbon materials standards</td>
</tr>
<tr>
<td>Clinker substitution, energy efficiency, and alternative fuels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>✩ Successful demonstrations of LC3-type and ternary blends in key applications (e.g., road and highway pavings) by 2025</td>
<td>✩ Clinker factor (clinker share of cement mix by weight) industry-wide</td>
</tr>
<tr>
<td></td>
<td>✩ Adoption or planned adoption of LC3-type and ternary blends by all 50 state DOTs</td>
<td>✩ Energy efficiency improvement relative to baseline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✩ Alternative fuels share of industry energy consumption</td>
</tr>
<tr>
<td>CCUS</td>
<td>3–5 commercial-scale demonstrations by 2030, including demonstration of alternative capture technologies</td>
<td>CCUS retrofits of existing plants, integration into new-build plants, associated capital formation</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Project finance model for CCUS established by 2030</td>
<td></td>
</tr>
<tr>
<td>Alternative production methods</td>
<td>3–5 commercial-scale demonstrations by 2030</td>
<td>Number of greenfield plant builds with alternative production methods and associated capital formation</td>
</tr>
<tr>
<td></td>
<td>Demonstrated technological success at commercial scale by 2030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initial cost reductions from FOAK to NOAK by 2030, consistent with commercial competitiveness with traditional production and CCUS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Products accepted under existing standards and adopted by large customers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project finance model for greenfield deployments established by 2030</td>
<td></td>
</tr>
<tr>
<td>Alternative binder chemistries</td>
<td>Entry into the approval process and approval by industry standards organizations (timing will vary by material based on current TRL)</td>
<td>Market share, starting in non-structural applications</td>
</tr>
</tbody>
</table>
Appendices

Appendix A: Modeling assumptions for Track A measures – clinker substitution, alternative fuels, and efficiency measures

Appendix A.1: Abatement potential and economic impact

Representative decarbonization pathways were modeled to estimate the economic and emissions impact of the currently deployable measures considered under Track A (clinker substitution, alternative fuels, and efficiency measures). Three representative scenarios were developed in consultation with industry experts to estimate the abatement potential and economic opportunity associated with deployment of these levers:

- **2030 Scenario 1: Moderate deployment.** More moderate but still ambitious deployment of key technologies, representing a slightly more ambitious set of deployment targets than the 2021 PCA roadmap. Modeling suggests the measures considered could abate 23% of sector emissions by 2030 if deployed consistent with Scenario 1 (22% from economically positive measures).

- **2030 Scenario 2: Aggressive deployment.** More aggressive deployment of key technologies by 2030, assuming targeted interventions can unlock accelerated scale-up. It presents a particularly ambitious, but achievable set of high-end targets. Modeling suggests the measures considered could abate 36% of sector emissions by 2030 if deployed consistent with Scenario 2 (32% from economically positive measures).

- **2050 Scenario:** Potential scale-up of key technologies in 2050. Modeling suggests the measures considered could abate up to 48% of sector emissions by 2050 if deployed consistent with this scenario (44% from economically positive measures).

These scenarios should be taken as directional estimates and are intended to be representative of feasible outcomes, not predictive or prescriptive. The report focuses on Scenario 2 to highlight an achievable upper-bound potential for deployable technologies, but, as noted in the report, industry is not presently on track to deploy at this scale. Significant intervention will be required to achieve deployment milestones consistent with Scenario 2.

Scenarios may overstate the potential impact from clinker substitution because they do not account for use of SCMs already taking place at ready-mix concrete plants, rather than cement plants. Scenarios may also overstate deployment potential of biomass fuels, which are in limited supply (discussed in Chapter 3).

Detailed assumptions and outputs are given for each scenario below. Note: for clinker substitution in all scenarios, “proportion in cement” refers to a weighted average across all modeled U.S. cement production, not the share of the material in a specific cement blend or at an individual cement plant.
Key assumptions

<table>
<thead>
<tr>
<th>Category</th>
<th>Assumption</th>
<th>Unit</th>
<th>Value</th>
<th>Source / notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency</td>
<td>Assumed energy efficiency improvement in 2030</td>
<td>% energy savings</td>
<td>5%</td>
<td>Assumed based on modernizations, upgrades, machine learning, and artificial intelligence. PCA 2021 US roadmap (p. 30) documents planned decrease of 5-7%.</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>Implied impact on emissions in 2030</td>
<td>% reduction in CO2e per tonne cement</td>
<td>5%</td>
<td>Assumed 5% reduction in energy emissions based on 5% energy emissions decrease.</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td>Assumed % of total fuel needs in 2030</td>
<td>% of total fuel need</td>
<td>5%</td>
<td>PCA 2021 US roadmap (p 29) documents aspiration to use biomass based alternative fuels for ~5% of fuel mix in 2030. Used assumption given high costs and supply constraints.</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Assumed % of total fuel needs in 2030</td>
<td>% of total fuel need</td>
<td>35%</td>
<td>PCA 2021 US roadmap (p 29) documents aspiration to use waste based alternative fuels for ~25% of fuel mix in 2030. Assumed 10% higher share in scenario given cost effectiveness of waste based alternative fuels.</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Tires as share of overall fuel mix 2030</td>
<td>%</td>
<td>20%</td>
<td>Emissions Impacts of Alternative Fuels Combustion in the Cement Industry (2023) report; Scrapped tires are the largest share of waste-based fuels. Page 44 of report models 15% share. Assumed maximum substitution rate from same report of 20% due zinc and sulfur content.</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Waste plastic as share of overall fuel mix 2030</td>
<td>%</td>
<td>10%</td>
<td>Emissions Impacts of Alternative Fuels Combustion in the Cement Industry (2023) report; limited to substitution rate of 10% due to chlorine content.</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Other alternative fuel waste streams as share of overall fuel mix 2030</td>
<td>%</td>
<td>5%</td>
<td>Calculation done to bridge. Other waste streams will be required given scrapped tires and waste plastics have maximum substitution limits.</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>Clinker proportion in cement 2030</td>
<td>%</td>
<td>75%</td>
<td>PCA 2021 US roadmap (p 35) documents a planned decrease to 0.75 clinker to cement ratio by 2050 with 0.85 target for 2030. Have assumed 0.75 target for 2030 could be met by using calcined clay and shifts of fly ash from concrete to cement production step.</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>Limestone proportion in cement 2030</td>
<td>%</td>
<td>10%</td>
<td>In-line with ASTM C595 range of 5-15%; exact ratio most likely given industry implementation/feasibility (Industry expert input).</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>Gypsum proportion in cement 2030</td>
<td>%</td>
<td>5%</td>
<td>Assumed share does not change in 2030.</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>Other proportion in cement 2030</td>
<td>%</td>
<td>0.7%</td>
<td>Assumed share does not change in 2030.</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>Calcined clay proportion in cement 2030</td>
<td>%</td>
<td>6%</td>
<td>Assumed high replacement of clinker with calcined clay given abundance of material and favorable economics</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>Fly ash proportion to be mixed with clinker in 2030</td>
<td>%</td>
<td>2.0%</td>
<td>ASTM C595 range; exact ratio most likely given industry implementation/feasibility (Industry expert input)</td>
</tr>
</tbody>
</table>
Scenario outputs

<table>
<thead>
<tr>
<th>Levers</th>
<th>2030</th>
<th>Abatement cost (USD/tCO2)</th>
<th>Abatement potential (MtCO2)</th>
<th>% of BAU emissions abated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency</td>
<td></td>
<td>-31.1</td>
<td>1.5</td>
<td>2%</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td></td>
<td>161.5</td>
<td>0.6</td>
<td>1%</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td></td>
<td>-4.6</td>
<td>6.4</td>
<td>7%</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td></td>
<td>-54.0</td>
<td>11.4</td>
<td>13%</td>
</tr>
</tbody>
</table>

Annual savings to industry ($M): (691.59)

2030 Scenario 2: Aggressive deployment

Key assumptions

<table>
<thead>
<tr>
<th>Category</th>
<th>Assumption</th>
<th>Unit</th>
<th>Value</th>
<th>Source / notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency</td>
<td>Assumed energy efficiency improvement in 2030</td>
<td>% energy savings</td>
<td>5%</td>
<td>Assumed based on modernizations, upgrades, machine learning, and artificial intelligence. PCA 2021 US roadmap (p. 30) documents planned decrease of 5-7%</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>Implied impact on emissions in 2030</td>
<td>% reduction in CO2e per tonne cement</td>
<td>5%</td>
<td>Assumed 5% reduction in energy emissions based on 5% energy emissions decrease</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td>Assumed % of total fuel needs in 2030</td>
<td>% of total fuel need</td>
<td>15%</td>
<td>PCA 2021 US roadmap (p 29) documents aspiration to use biomass based alternative fuels for ~5% of fuel mix in 2030. Used assumption given high costs and supply constraints</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Assumed % of total fuel needs in 2030</td>
<td>% of total fuel need</td>
<td>35%</td>
<td>PCA 2021 US roadmap (p 29) documents aspiration to use waste based alternative fuels for ~25% of fuel mix in 2030. Assumed 10% higher share in scenario given cost effectiveness of waste based alternative fuels</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Tires as share of overall fuel mix 2030</td>
<td>%</td>
<td>20%</td>
<td>Emissions Impacts of Alternative Fuels Combustion in the Cement Industry (2023) report; Scrapped tires are the largest share of waste-based fuels. Page 44 of report models 15% share. Assumed maximum substitution rate from same report of 20% due zinc and sulfur content.</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Waste plastic as share of overall fuel mix 2030</td>
<td>%</td>
<td>10%</td>
<td>Emissions Impacts of Alternative Fuels Combustion in the Cement Industry (2023) report; limited to substitution rate of 10% due to chlorine content</td>
</tr>
</tbody>
</table>
Alternative fuels - waste | Other alternative fuel waste streams as share of overall fuel mix 2030 | % | 5% | Calculation done to bridge. Other waste streams will be required given scrapped tires and waste plastics have maximum substitution limits

Clinker substitution | Clinker proportion in cement 2030 | % | 65% | PCA 2021 US roadmap (p 35) documents a planned decrease to 0.75 clinker to cement ratio by 2050 with 0.85 target for 2030. Have assumed 0.65 target for 2030 could be met by using calcined clay and shifts of fly ash from concrete to cement production step

Clinker substitution | Limestone proportion in cement 2030 | % | 15.0% | High-end of range of ASTM C595 range; exact ratio most likely given industry implementation/feasibility (Industry expert input)

Clinker substitution | Gypsum proportion in cement 2030 | % | 5% | Assumed share does not change in 2030

Clinker substitution | Other proportion in cement 2030 | % | 0.5% | Assumed share does not change in 2030

Clinker substitution | Calcined clay proportion in cement 2030 | % | 9% | Assumed high replacement of clinker with calcined clay given abundance of material and favorable economics

Clinker substitution | Fly ash proportion to be mixed with clinker in 2030 | % | 3.0% | ASTM C595 range; exact ratio most likely given industry implementation/feasibility (Industry expert input). Assumed slight increase in fly-ash given economics and emission intensity, though potentially limited supply going forward

Clinker substitution | GGBFS proportion to be mixed with clinker in 2030 | % | 0.5% | Assumed no change given limited additional volumes likely going forward

Clinker substitution | Natural pozzolans proportion to be mixed with clinker in 2030 | % | 1.5% | Assumed small increase in share of pozzolans used given low emissions intensity, though generally not used in US. Concrete Innovations - NRMCA

Scenario outputs

<table>
<thead>
<tr>
<th>Levers</th>
<th>Abatement cost (USD/tCO2)</th>
<th>Abatement potential (MtCO2)</th>
<th>% of BAU emissions abated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency</td>
<td>(31.1)</td>
<td>1.5</td>
<td>2%</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td>34.2</td>
<td>3.4</td>
<td>4%</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>(4.6)</td>
<td>6.4</td>
<td>7%</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>(59.4)</td>
<td>19.7</td>
<td>23%</td>
</tr>
</tbody>
</table>

Annual savings to industry ($M) | (1,246.47)
Pathways to Commercial Liftoff: Low-Carbon Cement 2050 Scenario

Key assumptions

<table>
<thead>
<tr>
<th>Category</th>
<th>Assumption</th>
<th>Unit</th>
<th>Value</th>
<th>Source / notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency</td>
<td>Assumed energy efficiency improvement 2050</td>
<td>% energy savings</td>
<td>20%</td>
<td>Assumed based on modernizations, upgrades, machine learning, and artificial intelligence. PCA 2021 US roadmap (p. 30) documents planned decrease of 20-30%</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>Implied impact on emissions in 2050</td>
<td>% reduction in CO2e per tonne cement</td>
<td>20%</td>
<td>Assumed based on modernizations, upgrades, machine learning, and artificial intelligence. PCA 2021 US roadmap (p. 30) documents planned decrease of 20-30%</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td>Assumed % of total fuel needs in 2050</td>
<td>% of total fuel need</td>
<td>20%</td>
<td>PCA 2021 US roadmap (p 29) documents aspiration to use biomass based alternative fuels for ~15% of fuel mix in 2050. Assumed slightly higher %</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Assumed % of total fuel needs in 2050</td>
<td>% of total fuel need</td>
<td>50%</td>
<td>PCA 2021 US roadmap (p 29) documents aspiration to use biomass based alternative fuels for ~45% of fuel mix in 2050. Assumed slightly higher %</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Tires as share of overall fuel mix 2050</td>
<td>%</td>
<td>20%</td>
<td>Emissions Impacts of Alternative Fuels Combustion in the Cement Industry (2023) report; Scrapped tires are the largest share of waste-based fuels. Page 44 of report models 15% share. Assumed maximum substitution rate from same report of 20% due zinc and sulfur content.</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Waste plastic as share of overall fuel mix 2050</td>
<td>%</td>
<td>10%</td>
<td>Emissions Impacts of Alternative Fuels Combustion in the Cement Industry (2023) report; limited to substitution rate of 10% due to chlorine content</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Other alternative fuel waste streams as share of overall fuel mix 2050</td>
<td>%</td>
<td>20%</td>
<td>Calculation done to bridge. Other waste streams will be required given scrapped tires and waste plastics have maximum substitution limits</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>% clinker in 2050</td>
<td>% of total cement</td>
<td>60%</td>
<td>PCA 2021 US roadmap (p 35) documents a planned decrease to 0.75 clinker to cement ratio by 2050. Have assumed 0.6 target for 2050 could be met by using limestone, calcined clay, natural pozzolans, and innovative SCMs</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>Limestone proportion in cement 2050</td>
<td>%</td>
<td>13%</td>
<td>In-line with ASTM C595 range of 5-15%; exact ratio most likely given industry implementation/feasibility (Industry expert input)</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>Gypsum proportion in cement 2050</td>
<td>%</td>
<td>5%</td>
<td>Assumed share does not change in 2050</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>Other proportion in cement 2050</td>
<td>%</td>
<td>5.00%</td>
<td>Assumed mix of concrete waste and innovative SCMs.</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>Calcined clay proportion in cement 2050</td>
<td>%</td>
<td>15%</td>
<td>Assumed high replacement of clinker with calcined clay given abundance of material and favorable economics</td>
</tr>
</tbody>
</table>
Scenario outputs

<table>
<thead>
<tr>
<th>Levers</th>
<th>Abatement cost (USD/tCO2)</th>
<th>Abatement potential (MtCO2)</th>
<th>% of BAU emissions abated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency</td>
<td>(31.1)</td>
<td>6.7</td>
<td>7%</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td>30.1</td>
<td>4.5</td>
<td>5%</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>(9.7)</td>
<td>10.1</td>
<td>10%</td>
</tr>
<tr>
<td>Clinker substitution</td>
<td>(59.9)</td>
<td>26.0</td>
<td>27%</td>
</tr>
</tbody>
</table>

Annual savings to industry ($M) (1,866.14)
Appendix A.2: Economic deep dives

Economic deep dives were performed for select clinker substitutes and alternative fuels. General assumptions used for these deep dives are given below:

<table>
<thead>
<tr>
<th>Category</th>
<th>Assumption</th>
<th>Unit</th>
<th>Value</th>
<th>Source / notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline - all</td>
<td>Capacity</td>
<td>Million tonnes/yr</td>
<td>1.5</td>
<td>Assumption, consistent with NETL 2023 modeling</td>
</tr>
<tr>
<td>Baseline - all</td>
<td>Utilization</td>
<td>Percent</td>
<td>100%</td>
<td>Assumption</td>
</tr>
<tr>
<td>Baseline - all</td>
<td>Lifecycle</td>
<td>years</td>
<td>20.0</td>
<td>Assumption</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Coal cost</td>
<td>$/tonne of coal</td>
<td>60.0</td>
<td>US EIA</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Coal emission intensity</td>
<td>kg CO2/GJ of coal</td>
<td>96.1</td>
<td>Fuel CO2 emissions factors IPCC guidelines table 2.3; GCCA GNR 2020 for fuel mix</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Fossil fuel share of combined fuel</td>
<td>%</td>
<td>85%</td>
<td>GNR (2020 average)</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Coal % of fossil fuel share</td>
<td>%</td>
<td>68%</td>
<td>GNR (2020 average)</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Coal % of combined fuel</td>
<td>%</td>
<td>58%</td>
<td>Calculated</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Petcoke % of fossil fuel share</td>
<td>%</td>
<td>21%</td>
<td>GNR (2020 average)</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Petcoke % of combined fuel</td>
<td>%</td>
<td>18%</td>
<td>Calculated</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Petcoke cost</td>
<td>$/tonne of petcoke</td>
<td>163.8</td>
<td>Average 2022 price USGC Argus fob USGC 6.5pc sulphur coke index</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Petcoke heat value</td>
<td>GJ/tonne petcoke</td>
<td>32.0</td>
<td>GNR (2020 average)</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Petcoke emissions intensity</td>
<td>kgCO2/GJ of petcoke</td>
<td>97.5</td>
<td>Fuel CO2 emissions factors IPCC guidelines table 2.3; GCCA GNR 2020 for fuel mix</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Natural gas cost</td>
<td>$/GJ of natural gas</td>
<td>7.23</td>
<td>Calculated from below</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>MMBtu to GJ conversion</td>
<td>GJ</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Natural gas % of fossil fuel share</td>
<td>%</td>
<td>11%</td>
<td>GNR (2020 average)</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Natural gas % of combined fuel</td>
<td>%</td>
<td>9%</td>
<td>Calculated</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>----</td>
<td>----</td>
<td>------------</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Natural gas emission intensity</td>
<td>kg CO2/GJ natural gas</td>
<td>56.1</td>
<td>Fuel CO2 emissions factors IPCC guidelines table 2.3; GCCA GNR 2020 for fuel mix.</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Secondary fuel % of combined fuel</td>
<td>%</td>
<td>15%</td>
<td>GNR (2020 average).</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Secondary fuel heat value</td>
<td>GJ/tonne of fuel</td>
<td>35.0</td>
<td>Assumption similar to waste tire.</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Secondary fuel emission intensity</td>
<td>kg CO2/tonne of fuel</td>
<td>85.0</td>
<td>Waste (tire) as proxy.</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Secondary fuel cost</td>
<td>$/tonne of fuel</td>
<td>30.0</td>
<td>Assumption - 50% of coal value</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Combined fuel emission intensity</td>
<td>kgCO2/tonne combined fuel</td>
<td>90.9</td>
<td>Calculated</td>
</tr>
<tr>
<td>Baseline - SCM</td>
<td>Clinker proportion in cement</td>
<td>%</td>
<td>95%</td>
<td>GNR (2020 average)</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Heat consumption</td>
<td>kJ per kg clinker</td>
<td>3875.0</td>
<td>GNR (2020 average)</td>
</tr>
<tr>
<td>Baseline - alternative fuels</td>
<td>Heat consumption</td>
<td>GJ per t cement</td>
<td>3.7</td>
<td>Calculation from above</td>
</tr>
<tr>
<td>Baseline - SCM</td>
<td>All in clinker cost</td>
<td>$/tonne of clinker</td>
<td>69.3</td>
<td>Clinker cost calculated in separate tab (see back up bottoms up build up). Adding in heuristic to account for additional processing etc., involved with clinker in cement production</td>
</tr>
<tr>
<td>Baseline - SCM</td>
<td>Clinker to cement heuristic</td>
<td>%</td>
<td>0.8</td>
<td>Heuristic to convert clinker cost to cost of clinker used for cement due to additional energy requirements</td>
</tr>
<tr>
<td>Baseline - SCM</td>
<td>Gypsum proportion in cement</td>
<td>%</td>
<td>5%</td>
<td>GNR (2020 average)</td>
</tr>
<tr>
<td>Baseline - SCM</td>
<td>Clinker emission intensity</td>
<td>kg CO2/tonne of clinker</td>
<td>828.0</td>
<td>Chemical emissions from clinker (525kgCO2/tonne clinker) + fuel needed for kiln (303 kgCO2/tonne clinker)</td>
</tr>
<tr>
<td>Baseline - SCM</td>
<td>Gypsum emission intensity</td>
<td>kgCO2/tonne gypsum</td>
<td>0.0</td>
<td>Assumed purchase of gypsum, resulting in scope 3 emissions</td>
</tr>
<tr>
<td>Baseline - SCM</td>
<td>Gypsum cost</td>
<td>$/tonne of cement</td>
<td>1.0</td>
<td>18 USD in 2018 for uncalcined gypsum in the US (Source: USGS); assuming 20 USD in 2020 and 5% per tonne of cement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Baseline - SCM</td>
<td>Gypsum cost</td>
<td>$/tonne of gypsum</td>
<td>20.0</td>
<td>Calculated using gypsum proportion in cement</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td>Capex for kiln bypass, storage</td>
<td>$M/plant</td>
<td>10.0</td>
<td>Industry expert input assumption, assumes multi-fuel burner (common in the US); equity financed 100%</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td>Capex amortization period</td>
<td>years</td>
<td>2.0</td>
<td>To fully implement (equity financed 100%)</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td>Biomass cost</td>
<td>$/tonne of wood</td>
<td>41.0</td>
<td>Average of Jan, Feb, March 2023 cost per tonne of manufacturing densified biomass products (EIA); https://www.eia.gov/biofuels/biomass/#table_data</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td>Biomass emission intensity</td>
<td>kg CO2/GJ of biomass</td>
<td>0.0</td>
<td>Industry expert input</td>
</tr>
<tr>
<td>Alternative fuels - biomass</td>
<td>Biomass % of total fuel</td>
<td>%</td>
<td>60%</td>
<td>Maximum potential given lower heat value of wood (combined fuel heat value should be 22GJ/ton+</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Capex for kiln bypass, storage</td>
<td>$M/plant</td>
<td>10.0</td>
<td>Industry expert input assumption, assumes multi-fuel burner (common in the US)</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Capex amortization period</td>
<td>years</td>
<td>2.0</td>
<td>To fully implement (equity financed)</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Tire cost</td>
<td>$/tonne tire chips</td>
<td>15.3</td>
<td>Calculated from below</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Opex cost of co-processing scrap tires</td>
<td>$/tonne of tires</td>
<td>10.0</td>
<td>Emissions Impacts of Alternative Fuels Combustion in the Cement Industry (2023) report; Assumed tires are pre-processed off-site before arriving at plant. Page 43 provides co-processing estimates from (GIZ/Holcim 2020, ICF 2017). Used low-end of estimates</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Cost of energy from tires</td>
<td>$/GJ</td>
<td>5.3</td>
<td>Proxy cost for sourcing tires (nominal cost of energy x heat value)</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Nominal price of energy from tires</td>
<td>$/GJ</td>
<td>0.2</td>
<td>Emissions Impacts of Alternative Fuels Combustion in the Cement Industry (2023) report; Page 44 provides estimates ($0.15/GJ, US tires 2021). Used mid-points of estimates and calculated $/tonne by multiplying by heat value</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Capex cost of scrap tires</td>
<td>$M/plant</td>
<td>1.0</td>
<td>Emissions Impacts of Alternative Fuels Combustion in the Cement Industry (2023) report; Page 43 provides pre- and co-processing estimates from (GIZ/Holcim 2020, ICF 2017). Used low end of estimate. Assumed pre-processing occurs off-site before arriving at plant</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Tire emission intensity</td>
<td>kg CO2/GJ tire</td>
<td>85.0</td>
<td>https://www.eia.gov/environment/emissions/co2_vol_mass.php</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Tire heat value</td>
<td>GJ/kg tire</td>
<td>35.0</td>
<td>Used midpoint from Thermogravimetric and Kinetic Analysis of Co-Combustion of Waste Tires and Coal Blends (2021), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931440/#:~:text=The%20calorific%20value%20of%20the,coal%20and%20other%20solid%20fuels</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Tire % of total fuel</td>
<td>%</td>
<td>20%</td>
<td>GCCA GNR (2020). 30% waste based alternative fuels from tires, 6% from plastics, and 5% from waste oils and the rest from a mix. Have assumed tires, plastics and waste oils comprise total and scaled each %</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Other waste cost</td>
<td>$/tonne other waste</td>
<td>11.38</td>
<td>Calculated using average of tire and waste plastics</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Capex cost for other waste</td>
<td>$M/plant</td>
<td>1.3</td>
<td>Calculated using average capex of waste tire and waste plastics</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Other waste emission intensity</td>
<td>kg CO2/GJ other waste</td>
<td>80.0</td>
<td>Calculated using average of tire and waste plastics</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Other waste heat value</td>
<td>GJ/kg other waste</td>
<td>35.0</td>
<td>Calculated using average of tire and waste plastics</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Other waste % of total fuel</td>
<td>%</td>
<td>70%</td>
<td>GCCA GNR (2020). 30% waste based alternative fuels from tires, 6% from plastics, and 5% from waste oils and the rest from a mix. Have assumed tires, plastics and waste oils comprise total and scaled each %</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Waste plastic cost</td>
<td>$/tonne waste plastic</td>
<td>7.5</td>
<td>Calculated from below</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Cost of co-processing waste plastics</td>
<td>$/tonne of waste plastic</td>
<td>7.5</td>
<td>IFC 2017 report: INCREASING THE USE OF ALTERNATIVE FUELS AT CEMENT PLANTS: INTERNATIONAL BEST PRACTICE. Page 67 appendix table. Used mid-points of estimates for small facility given 5% production. Assumed pre-processing occurs offsite before arriving at plant</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Cost of energy from waste plastics</td>
<td>$/GJ waste plastic</td>
<td>0.0</td>
<td>Assumed cement plants receive this for free instead of being paid for it to go to landfills.</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Capex cost of waste plastics</td>
<td>$M/plant</td>
<td>1.6</td>
<td>IFC 2017 report: INCREASING THE USE OF ALTERNATIVE FUELS AT CEMENT PLANTS: INTERNATIONAL BEST PRACTICE. Page 67 appendix table. Used mid-points of estimates for small facility given 5% production. Assumed pre-processing occurs offsite before arriving at plant.</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Waste plastic emission intensity</td>
<td>kg CO2/GJ waste plastic</td>
<td>75.00</td>
<td>Morgan Stanley Research Report - Cement decarbonization (Energy efficiency and alternative fuels)</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Waste plastic heat value</td>
<td>GJ/kg waste plastic</td>
<td>35.0</td>
<td>ECRA 2016; EPA 2020b</td>
</tr>
<tr>
<td>Alternative fuels - waste</td>
<td>Waste plastic % of total fuel</td>
<td>%</td>
<td>10%</td>
<td>GCCA GNR (2020). 30% waste based alternative fuels from tires, 6% from plastics, and 5% from waste oils and the rest from a mix. Have assumed tires, plastics and waste oils comprise total and scaled each %</td>
</tr>
<tr>
<td>Clinker substitutes - Fly ash</td>
<td>Fly ash to be mixed with clinker</td>
<td>%</td>
<td>30%</td>
<td>ASTM C595 range; exact ratio most likely given industry implementation/feasibility (Industry expert input)</td>
</tr>
<tr>
<td>Clinker substitutes - Fly ash</td>
<td>Emission intensity fly ash</td>
<td>kg CO2/tonne fly ash</td>
<td>0.1</td>
<td>MPA Fact Sheet 18, CO2e of UK cement, additions and cementitious material</td>
</tr>
<tr>
<td>Clinker substitutes - Fly ash</td>
<td>Fly ash cost</td>
<td>$/tonne fly ash</td>
<td>45.0</td>
<td>Industry expert input</td>
</tr>
<tr>
<td>Clinker substitutes</td>
<td>Proportion to be mixed with clinker</td>
<td>%</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td></td>
<td>5%</td>
<td>Global Cement and Concrete Association, 2020 (US numbers)</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td></td>
<td>20.0</td>
<td>Calculated using gypsum proportion in cement and USGS $/tonne gypsum</td>
<td></td>
</tr>
<tr>
<td>GBFS</td>
<td></td>
<td>0.5</td>
<td>ASTM C595 range; exact ratio most likely given industry implementation/feasibility (Industry expert input)</td>
<td></td>
</tr>
<tr>
<td>Natural pozzolans</td>
<td></td>
<td>11.0</td>
<td>USGS Mineral Yearbook 2022 Summary, construction sand cost as a proxy (incl extraction, transport and margin of the seller)</td>
<td></td>
</tr>
<tr>
<td>Natural pozzolans</td>
<td>%</td>
<td>0.3</td>
<td>ASTM C595 range; exact ratio most likely given industry implementation/feasibility (Industry expert input)</td>
<td></td>
</tr>
<tr>
<td>Calcined clay</td>
<td></td>
<td>0.1</td>
<td>Similar to fly ash, assuming no additional treatment needed</td>
<td></td>
</tr>
<tr>
<td>Calcined clay</td>
<td>%</td>
<td>30%</td>
<td>ASTM C595 range; exact ratio most likely given industry implementation/feasibility (Industry expert input)</td>
<td></td>
</tr>
<tr>
<td>Calcined clay</td>
<td>%</td>
<td>15%</td>
<td>Industry expert input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC emission intensity</td>
<td>187.3</td>
<td>Refer to emission intensity of CC tab</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limestone emission intensity</td>
<td>8.0</td>
<td>Limestone fines, MPA Fact sheet 18 CO2e of UK cement, additions and cementitious material</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcined clay cost</td>
<td>7.0</td>
<td>Assumed similar raw material opex cost as limestone given similarity of processes (e.g., extraction) and abundance as clay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limestone cost</td>
<td>7.0</td>
<td>USGS Mineral Yearbook Summary for crushed stone (incl. limestone), selling price (2022) at $14/ton, deducting transportation costs (50 km at 0.1 USD/t/km = 5 USD) and margin of 20% gives proxy for production costs at ~$7/tonne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capex for additional rotary kiln</td>
<td>6.6</td>
<td>Financial Attractiveness of LC3, K. Scrivener, A. Dekeukelaere, F. Avet, L. Grimmeissen (assuming rotary kiln at plant at capacity, no available one for use given US demand. Assuming rotary kiln instead of flash calciner, given current commercial availability constraint of latter</td>
<td></td>
</tr>
<tr>
<td>Clinker substitutes
- calcined clay</td>
<td>Capex for silo from other types of cement</td>
<td>$M/plant</td>
<td>8.0</td>
<td>Industry expert input and cross-checked with press clippings on project announcements for cement silos (e.g., Tokyo Cement announced a Cement terminal with 3 cement silos costing total of $12M in 2021). https://www.globalcement.com/news/item/13440-tokyo-cement-commissions-colombo-cement-terminal. Assumed higher cost per terminal</td>
</tr>
<tr>
<td>Clinker substitutes
- calcined clay</td>
<td>Capex for raw material storage</td>
<td>$M/plant</td>
<td>1.0</td>
<td>Industry expert input</td>
</tr>
<tr>
<td>Clinker substitutes
- calcined clay</td>
<td>Amortization period</td>
<td>years</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Clinker substitutes
- calcined clay</td>
<td>Heat consumption of calcined clay</td>
<td>TJ/ton</td>
<td>2.2</td>
<td>THAA Cemtech 2021</td>
</tr>
<tr>
<td>Clinker substitutes
- calcined clay</td>
<td>Electricity for grinding</td>
<td>kwh/ton</td>
<td>20.0</td>
<td>Loesche</td>
</tr>
<tr>
<td>Clinker substitutes
- calcined clay</td>
<td>Electricity</td>
<td>USD/ MWh</td>
<td>73</td>
<td>US EIA</td>
</tr>
<tr>
<td>Clinker substitutes
- calcined clay</td>
<td>Maintenance cost for new equipment</td>
<td>$/tonne calcined clay</td>
<td>5</td>
<td>Assumption: 50% of cement maintenance costs</td>
</tr>
<tr>
<td>Clinker substitutes
- calcined clay</td>
<td>Labor costs for new equipment</td>
<td>$/tonne calcined clay</td>
<td>12.13</td>
<td>65% of labor costs for baseline (lower production volume)</td>
</tr>
<tr>
<td>Baseline - all</td>
<td>WACC</td>
<td>%</td>
<td>10%</td>
<td>Assumption</td>
</tr>
</tbody>
</table>
Appendix A.3: Representative efficiency measures

The modeling exercise assumes adoption of representative efficiency measures outlined below, identified based on input from industry experts.46

<table>
<thead>
<tr>
<th>Initiative</th>
<th>Electrical saving (kwh/t)</th>
<th>Thermal saving (GJ/t)</th>
<th>Investing cost ($/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient transport systems (elevator instead of air conveyor)</td>
<td>3.4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Process control vertical mill</td>
<td>1.55</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Energy management and process control</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>High efficiency classifiers in cement (product) mill</td>
<td>3.95</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Improved grinding media in ball mills</td>
<td>4</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>High efficiency motors (applying variable speed drive)</td>
<td>3</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Efficient fans with variable speed drive</td>
<td>7</td>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>Optimization of compressed air systems</td>
<td>3</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Efficient lighting (led)</td>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>Production of low alkali cement</td>
<td>0</td>
<td>0.44</td>
<td>0</td>
</tr>
<tr>
<td>Convert to reciprocating grate cooler</td>
<td>-3</td>
<td>0.27</td>
<td>2.9</td>
</tr>
<tr>
<td>Kiln combustion system improvements</td>
<td>0</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>Optimize heat recovery/upgrade clinker cooler</td>
<td>-2</td>
<td>0.105</td>
<td>0.2</td>
</tr>
<tr>
<td>Seal replacement in the kiln process</td>
<td>0</td>
<td>0.011</td>
<td>0.1</td>
</tr>
<tr>
<td>Low pressure drop cyclones</td>
<td>2.55</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Efficient kiln drives motors</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>Improved refractories material</td>
<td>0</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Kiln shell heat loss reduction</td>
<td>6.1</td>
<td>0.365</td>
<td>0.3</td>
</tr>
<tr>
<td>Adjustable speed drive for kiln fan</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Selecting raw material with lower friction coefficient</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Selecting raw material with lower humidity</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Selecting raw material with lower dimension</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Appendix B: CCUS economics assumptions

Figures for carbon capture are based on NETL 2023 modeling for 95% capture at a preheater/precalciner kiln fueled with coal and coke, using a CANSOLV amine-best post-combustion system, on a 1.5 MTPA cement plant.47 Capital costs are adjusted to reflect a 12-year payback period using capital recovery factors from the Energy Futures Initiative.48 Transportation and storage costs of ~$10–40 per tonne of captured CO2 are assumed, consistent with Carbon Management Liftoff report.49

This estimate does not include other owner’s costs such as pre-production costs associated with start-up and performance evaluation and inventory of chemicals and spare parts for ongoing operations. These costs are assumed to be limited and not to materially alter project economics.

Detailed calculations for storage (CCS) and utilization (CCU) cases are provided in Table B.1 and Table B.2, respectively.

Table B.1: CCS economics

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Low</th>
<th>High</th>
<th>Sources / notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case used</td>
<td>CM95-B</td>
<td>CM95-B</td>
<td>PH/PC kiln with coal/coke</td>
</tr>
<tr>
<td>Capital costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total capex, $M</td>
<td>$544,376,000.00</td>
<td>$544,376,000.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>Capital recovery factor</td>
<td>0.11</td>
<td>0.13</td>
<td>CRF used by EFI for 12-year payback (compare to NETL CRF for 30-year payback of 4.63%)</td>
</tr>
<tr>
<td>Amortized capital cost, $ p.a.</td>
<td>$59,881,360.00</td>
<td>$70,768,880.00</td>
<td></td>
</tr>
<tr>
<td>Operating costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed O&M, $ p.a.</td>
<td>$16,575,809.00</td>
<td>$16,575,809.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>Variable O&M, $ p.a.</td>
<td>$11,335,656.00</td>
<td>$11,335,656.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>Total O&M, $ p.a.</td>
<td>$27,911,465.00</td>
<td>$27,911,465.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>Fuel + Power, $ p.a.</td>
<td>$33,649,342.00</td>
<td>$33,649,342.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>OPEX, $ p.a.</td>
<td>$61,560,807.00</td>
<td>$61,560,807.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>Total cost p.a.</td>
<td>$121,442,167.00</td>
<td>$132,329,687.00</td>
<td></td>
</tr>
<tr>
<td>CO2 captured, tonnes p.a.</td>
<td>1,104,478</td>
<td>1,104,478</td>
<td>Assumptions of NETL study</td>
</tr>
<tr>
<td>Cement output, tonnes p.a.</td>
<td>1,500,000</td>
<td>1,500,000</td>
<td>Assumption of NETL study</td>
</tr>
</tbody>
</table>

Model outputs

Cost of capture, $ / tonne of CO2	$109.95	$119.81
Total capital cost, $ / tonne of CO2	$54.22	$64.07
Total O&M cost, $ / tonne of CO2	$25.27	$25.27
Fuel + power cost, $ / tonne of CO2	$30.47	$30.47
Cost of capture, $ / tonne of cement	$39.92	$47.13
Total capital cost, $ / tonne of cement	$39.92	$47.13
Total O&M cost, $ / tonne of cement	$18.61	$18.61
Fuel + power cost, $ / tonne of cement	$22.43	$22.43

With T&S

Transport & storage cost, $ / tonne of CO2	$10	$40
Transport & storage cost, $ / tonne of cement	$7.36	$29.45
Cost of capture + T&S, $ / tonne of CO2	$119.95	$159.81
Cost of capture + T&S, $ / tonne of cement	$88.32	$117.67

Premium on $130 base price per tonne of cement

| 68% | 91% |

Net of 45Q

45Q, $ / tonne of CO2	$85	$85
45Q, $ / tonne of cement	$62.59	$62.59
Cost of capture + T&S net of 45Q, $ / tonne of CO2	$34.95	$74.81
Cost of capture + T&S net of 45Q, $ / tonne of cement	$25.74	$55.09

Premium on $130 base price per tonne of cement

| 20% | 42% |

Cost reduction to breakeven with 45Q

| 29% | 47% |

Offtake commitment contract sizing

| Offtake commitment p.a. | $38,606,317.00 | $82,628,177.00 |
| Total offtake commitment (12 yrs) | $463,275,804.00 | $991,538,124.00 |
Table B.2: CCU economics

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Low</th>
<th>High</th>
<th>Sources / notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case used</td>
<td>CM95-B</td>
<td>CM95-B</td>
<td>PH/PC kiln with coal/coke</td>
</tr>
<tr>
<td>Capital costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total capex, $M</td>
<td>$544,376,000.00</td>
<td>$544,376,000.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>Capital recovery factor</td>
<td>0.11</td>
<td>0.13</td>
<td>CRF used by EFI for 12-year payback (compare to NETL CRF for 30-year payback of 4.63%)</td>
</tr>
<tr>
<td>Amortized capital cost, $ p.a.</td>
<td>$59,881,360.00</td>
<td>$70,768,880.00</td>
<td></td>
</tr>
<tr>
<td>Operating costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed O&M, $ p.a.</td>
<td>$16,575,809.00</td>
<td>$16,575,809.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>Variable O&M, $ p.a.</td>
<td>$11,335,656.00</td>
<td>$11,335,656.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>Total O&M, $ p.a.</td>
<td>$27,911,465.00</td>
<td>$27,911,465.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>Fuel + Power, $ p.a.</td>
<td>$33,649,342.00</td>
<td>$33,649,342.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>OPEX, $ p.a.</td>
<td>$61,560,807.00</td>
<td>$61,560,807.00</td>
<td>From NETL study for CM95-B</td>
</tr>
<tr>
<td>Total cost p.a.</td>
<td>$121,442,167.00</td>
<td>$132,329,687.00</td>
<td></td>
</tr>
<tr>
<td>CO2 captured, tonnes p.a.</td>
<td>1,104,478</td>
<td>1,104,478</td>
<td>Assumes 95% capture of 1,162,608 tonnes CO2 emitted from kiln p.a. for dry PH/PC kiln</td>
</tr>
<tr>
<td>Cement output, tonnes p.a.</td>
<td>1,500,000</td>
<td>1,500,000</td>
<td>Assumption of NETL study</td>
</tr>
</tbody>
</table>

Model outputs

Cost of capture, $ / tonne of CO2	$109.95	$119.81
Total capital cost, $ / tonne of CO2	$54.22	$64.07
Total O&M cost, $ / tonne of CO2	$25.27	$25.27
Fuel + power cost, $ / tonne of CO2	$30.47	$30.47
Total capital cost, $ / tonne of cement	$80.96	$88.22
Total O&M cost, $ / tonne of cement	$18.61	$18.61
Fuel + power cost, $ / tonne of cement	$22.43	$22.43

With T&S

Transport & storage cost, $ per tonne of CO2	$10	$40
Transport & storage cost, $ per tonne of cement	$7.36	$29.45
Cost of capture + T&S, $ / tonne of CO2	$119.95	$159.81
Cost of capture + T&S, $ / tonne of cement	$88.32	$117.67
Premium on $130 base price per tonne of cement	68%	91%

Net of 45Q

4SQ, $ per tonne of CO2	$85	$85
4SQ, $ per tonne of cement	$62.59	$62.59
Cost of capture + T&S net of 45Q, $ / tonne of CO2	$34.95	$74.81
Cost of capture + T&S net of 45Q, $ / tonne of cement	$25.74	$55.09
Premium on $130 base price per tonne of cement	20%	42%
Cost reduction to breakeven with 45Q	29%	47%

Offtake commitment contract sizing

| Offtake commitment p.a. | $38,606,317.00 | $82,628,177.00 |
| Total offtake commitment (12 yrs) | $463,275,804.00 | $991,538,124.00 |
Appendix C: Capital formation sizing

The capital formation opportunity for cement is estimated roughly and directionally for 2030, 2050, and cumulatively, assuming two kinds of deployments:

- Scale-up of currently deployable measures (e.g., clinker substitution and alternative fuels) at all plants excluding grinding-only plants, including active plants and potential additions by 2030 and 2050. Efficiency measures are not included because of data limitations.\(^{50,51}\)

- Scale-up of CCUS and alternative production measures—assumed to have roughly the same CAPEX requirement based on industry conversations—at all plants excluding grinding-only plants, including currently active plants and potential additions by 2030 and 2050.

For the 2030 horizon, it is assumed that currently deployable measures are fielded at the entire footprint of cement plants, while CCUS and alternative production methods see ~3–5 initial deployments each, consistent with their Pathways to Liftoff.

For the 2050 horizon, it is assumed that the remaining plant sites (those not covered by demonstrations) see deployment either of a CCUS retrofit or greenfield build using an alternative production method or potentially a novel chemistry.

This approach may overstate CAPEX requirements in two ways:

- It assumes CAPEX for all measures will remain roughly consistent regardless of plant size. For CCUS, greenfield plants, and in many cases of the currently deployable measures, CAPEX is unlikely to vary with plant size, given that similar equipment is required regardless of production capacity. In other cases, plant size may have more of an impact on CAPEX.

- It does not assume CAPEX reductions from FOAK to NOAK.

A detailed CAPEX buildup is given in Table C.

50 Excluding five current plants that are grinding-only.
51 Number of potential new-build plants is estimated by calculating the 1.5 MTPA plants required to meet incremental demand by 2030 and 2050. Potential new-build plant capacity may be overstated if incremental demand is met with latent capacity at existing plants rather than new construction.
<table>
<thead>
<tr>
<th>Est. plant footprint</th>
<th>By 2030</th>
<th>Incremental by 2050</th>
<th>Cumulative by 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline plant footprint, excluding 5 grinding-only plants, #</td>
<td>93</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>Baseline production (2022), Mtpa</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Production in outyear (2030 or 2050), Mtpa</td>
<td>109</td>
<td>109</td>
<td>124</td>
</tr>
<tr>
<td>Est. capacity per new build plant, Mtpa</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Implied new build plants, #</td>
<td>9</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>Implied total plants, excluding grinding-only, #</td>
<td>102</td>
<td>102</td>
<td>112</td>
</tr>
</tbody>
</table>

CAPITAL FORMATION

Demonstrations

CCUS

- Assumed CCUS demo CAPEX, $M
 - Low: 500
 - High: 1,000

- CCUS demos, #
 - Low: 3
 - High: 5

- Total CCUS demo CAPEX
 - Low: 1,500
 - High: 5,000

Alt production methods

- Assumed alt production method demo CAPEX, $M
 - Low: 500
 - High: 1,000

- Alt production method demos, #
 - Low: 3
 - High: 5

- Total alt production method demo CAPEX
 - Low: 1,500
 - High: 5,000

- Total demo CAPEX
 - Low: 3,000
 - High: 10,000

Deployments

Currently deployable measures

- Alternative fuels and efficiency CAPEX per plant, $M
 - Low: 10
 - High: 10

- Clinker substitution CAPEX per plant, $M
 - Low: 16
 - High: 60

- Total CAPEX per plant, $M
 - Low: 26
 - High: 70

- Total plants deployed, #
 - Low: 102
 - High: 102

- Total CAPEX for deployment
 - Low: 2,652
 - High: 7,140

CCUS or alt production methods

- CAPEX per deployment, $M
 - Low: 500
 - High: 1,000

- Total plants deployed, # (excluding demos)
 - Low: 0
 - High: 106

- Total CAPEX for deployment
 - Low: 0
 - High: 53,000

TOTAL CAPITAL FORMATION

- Incremental by outyear, $M
 - Low: 5,652
 - High: 17,140

- Cumulative by 2050
 - Low: 53,260
 - High: 102,700

 - Low: 58,912
 - High: 119,840
References

xxv Recent activity summarized in United State Geological Survey (USGS). (2023). Mineral Commodities Survey: Cement. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-cement.pdf. “Upgrades at a cement plant in Alabama were completed and the facility restarted production in mid-2022. An upgrade of a cement plant in Indiana progressed toward its expected completion date in early 2023. A plant upgrade to increase cement production at a site in Arizona was completed in 2022. Plans to increase capacity at a cement plant in Texas were announced, with completion expected in mid-2025. Upgrades at a terminal in Florida were completed in 2022, and work began to increase capacity at a terminal in Virginia. Plans for new cement terminals in Georgia and Texas were announced. Several minor upgrades were ongoing at some other domestic plants and a few other cement terminals. A Spain-based company reported plans to open a specialty cement facility in Louisiana in 2023.”

xxx Ira See, for example, Global Cement and Concrete Association (2021), Concrete Future: The GCCA 2050 Cement and Concrete Industry Roadmap for Net Zero Concrete. gccassociation.org/concretefuture/wp-content/uploads/2021/10/GCCA-Concrete-Future-Roadmap-Document-AW.pdf.

Concern surfaced in conversations with industry.

Based on conversations with industry.

department of energy (n.d.). “Resilient and Efficiency Codes Implementation.” Resilient and Efficient Codes Implementation | Building Energy Codes Program

On behalf of Biomason, Blue Planet Systems, Brimstone, CarbonBuilt, Chement, Fortera, Minus Materials, Queens Carbon, Sublime Systems, and Terra CO2
DC$_2$ is a coalition of innovative companies at the forefront of the global effort to reduce carbon emissions from cement and concrete. Our ten current members—Biomason, Blue Planet Systems, Brimstone, CarbonBuilt, Chemet, Fortera, Minus Materials, Queens Carbon, Sublime Systems, and Terra CO2—are pioneering North American venture- and private-sector-backed climate technology companies dedicated to delivering ultra-low carbon, carbon-neutral, and carbon-negative cement and concrete solutions. Collectively, our technologies rethink production processes and feedstocks, introduce novel materials, and utilize or sequester CO$_2$ directly in concrete—all with a goal of decarbonizing the cement and concrete sector.

No members engage in collusive or anti-competitive activities, including but not limited to discussions of pricing, market allocations, etc.
SHARED OBJECTIVES

LOW-CARBON FUTURE
To build future infrastructure with low-carbon cement & concrete

INDUSTRIAL BASE CAPACITY
To scale up the low-carbon cement and concrete industrial manufacturing base

LOCAL JOBS, LOCAL SUPPLY
To create new American jobs, bolster US competitiveness and reinforce local economies and local supply chains

ENVIRONMENTAL JUSTICE
To promote co-benefit generation and environmental justice in designing the future of manufacturing

DECARBONIZED CEMENT AND CONCRETE WORKING GROUP (DC2)
PRODUCTION TAX CREDITS
Per dollar per kg of CO₂ abated, low-carbon cement and concrete is one of the most efficient taxpayer investments in avoiding CO₂.

DEMAND SUPPORT
A well-constructed demand-side support strategy will unlock additional private financing to commercialize transformational solutions.

EARLY ADOPTER PLATFORMS
We will seek to use the power of the public sector to convene sandbox testing to build confidence.

LOW-CARBON GLOBAL STANDARDS
Ecolabeling is fraught with non-standard accounting.

TRANSFORMATIONAL PROCUREMENT POLICIES
Procurement policies that are attempting to buy clean and accelerate innovation are blunted by incrementalist, or supply-limited product offerings.
THE GWP OF THE FINAL CONCRETE DRIVES EVERYTHING.

Collectively, we are technology agnostic. More shots on goal = greater probability of success in avoiding, abating, capturing and storing carbon to net-zero success.

TECHNOLOGY
We have distinct technologies that will drive down GWP of the critical materials that comprise our modern society

DEPLOYMENT
We are innovating, from displacing high GWP binders, to net-negative feedstocks, to alternative manufacturing, to mineralization of CO$_2$ (alone or in combination)

ADOPTION
We live in a world built to suit. We have customers that prefer prescription, performance, and customer-determined applications

IMPACT
Our success is not driven by innovation alone, but by the combination of adoption and net carbon reduction
TECH

Biocement® grows in ambient temperatures, building with carbon to create controlled, structural cement for products or applied services

DEPLOY

A bacterial process that enables concrete manufacturers to decouple from cement-based manufacturing for block plants and precast products

IMPACT

Uses carbon as an input, enabling carbon-negative pathways through the production of construction materials
Geomimetic mineralization technology uses CO2 from any source as a feedstock to create ultra-low/carbon negative aggregative.

Commercial demonstration plant operating in CA to produce carbon-sequestering aggregate to be utilized in concrete as a replacement for virgin aggregate.

Potential to store up to 1,120 lbs of CO2 per cubic yard of concrete.
Carbon-negative process that produces portland cement from a carbon-free calcium silicate rock instead of limestone.

Portland cement from the Brimstone process is physically and chemically identical to conventional portland cement.

As reflected in a third-party LCA, the Brimstone process is carbon-negative across a range of energy-use scenarios.
Retrofits of existing concrete masonry facilities with off-the-shelf equipment to enable ultra-low carbon concrete technology, including utilization of low-carbon raw materials and waste CO2.

Commercially available concrete masonry units at CarbonBuilt's flagship retrofit in Alabama, with additional retrofits underway

70-100% carbon footprint reduction, through both avoidance and mineralization, compared to facility baseline
Renewable electricity + CaO3 to perform the chemical reaction with less energy and less CO2 emitted + cheaper carbon capture

Cement for cast in place concrete deployed via ready-mix concrete producers

- More efficient production
- No energy emissions
- Easier carbon capture
The Fortera ReCarb™ process re-carbonates Calcium Oxide without losing its cementitious properties, resulting in a cementitious mineral that is rich in CO₂.

DEPLOY
- SCM blend up to 35%
- 100% OPC substitute

IMPACT
- 70-100% Reduction in CO₂ per ton of cement
- Commercial Plant in Redding, CA
Producing carbon-negative, biorenewable limestone powder using microalgae, sunlight, seawater and CO₂

Minus Materials limestone is "plug and play" as a raw material for portland cement production or a filler for portland limestone cement

Elimination of process (calcination) emissions during portland cement manufacturing, and permanent CO2 storage as a filler or SCM.
Breakthrough ultra-low CO2 manufacturing technology to produce cementitious materials from industry-standard raw materials

Modular & scalable reactors that produce decarbonized SCM's at the cement plant

- Limitless, cost-competitive SCM supply
- 20-50% cement decarbonization
Clean, all-electric extraction of calcium and reactive silica from zero-carbon raw materials resulting in cement that exceeds performance and durability standards (ASTM C1157)

Currently manufacturing by the ton: ultra-low-carbon cement for ready-mix concrete producers building cast in place structures

Independent third-party LCA (preliminary EPD) indicating >93% reduction in CO₂
Conversion of inexpensive, abundant, and local feedstocks from existing aggregate mines to high-performing and cost-competitive cementitious materials.

Supplement, blend, or replace Portland cement.

Headquarters and pilot plant located in Golden, Colorado.
POINTS OF CONTACT

CONNOR WOODRICH
cwoodrich@forterausa.com

MICHELE BLACKBURN
mblackburn@terraco2.com

TROY HOTTE
troy.hottle@biomason.com

SAL BRZOZOWSKI
sbrzozowski@carbonbuilt.com

SIMON G. BRANDLER
simon@brimstone.com

SARAH WILLIAMS
sarah.williams@minusmaterials.com

LAURA BERLAND-SHANE
laura@blueplanetsystems.com

DANIEL KOPP
daniel@queenscarbon.com

2023

DECARBONIZED CEMENT AND CONCRETE WORKING GROUP (DC2)
POINTS OF CONTACT

GREG HOUCHINS
greg@chement.co

JOE HICKEN
joe@sublime-systems.com
MAKERS ARE THE FUTURE
Cement and concrete manufacturers built the modern world. Manufacturers will continue to be the future of our built environment.

NO CRYSTAL BALL
The ultimate measure of success is $ per CO2 avoided or permanently stored + market adoption.

INCREMENTAL IS DATED
We must address the climate crisis head-on, with transformational decarbonized materials.
THANK YOU

dc2@decarbonizedconcrete.org
www.decarbonizedconcrete.org